Abstract:
A method for monitoring a battery module in a vehicle includes selecting an upper cut-off voltage and a lower cut-off voltage for the battery module. The method includes charging the battery cell from an original state to a first benchmark voltage greater than an upper cut-off voltage, via a first charging process. The method includes discharging the battery cell from the first benchmark voltage to a second benchmark voltage less than a lower cut-off voltage, via a first discharging process. The battery module is then charged from the second benchmark voltage to the first benchmark voltage, via a second charging process. The method includes obtaining a ratio of a discharging capacity to a charging capacity of the battery module. Operation of the vehicle is controlled based in part on the ratio, including taking at least one remedial action if the ratio is less than a predefined threshold.
Abstract:
A system for self-discharge prognostics for vehicle battery cells with an internal short circuit includes a plurality of battery cells and a voltage sensor providing open-circuit voltage data over time for each battery cell. The system further includes a computerized prognostic controller operating programming to monitor the open-circuit voltage data over time for each of the plurality of battery cells and evaluate a voltage drop rate through a time window for each of the plurality of battery cells based upon the open-circuit voltage data. The controller further identifies one of the plurality of battery cells to include the internal short circuit based upon the voltage drop rate and signals an alert based upon the one of the plurality of battery cells including the internal short circuit.
Abstract:
A battery system with cell groups arranged in modules and with plurality of modules arranged in individual battery sub-packs includes a controller network configured to monitor the sub-packs. The network includes a plurality of cell monitoring units (CMUs); each CMU connected to one module for processing data for respective cell groups. The network also includes multiple voltage sensors on each CMU, with each sensor detecting voltage across one cell group. The network additionally includes an electronic controller programmed with an algorithm and in wireless communication with each CMU. The algorithm identifies when electrical power is disconnected from the RESS and directs electrical current through a selected sub-pack after power is restored. The algorithm also interrogates voltage sensors of a particular CMU, detects a change in voltage triggered by the current, and records a cross-reference between the particular CMU and the selected sub-pack when the change in voltage is detected.
Abstract:
An electrical system includes a voltage bus, voltage sensor(s) measuring a first voltage between a positive bus rail and electrical ground, and a second voltage between a negative bus rail and electrical ground, a bias resistor, and a controller. When the switch is closed, the controller measures four or more discrete voltage samples of the first and second voltages. The samples are grouped into first and second sample groups each having three discrete voltage samples, with the second and third voltage samples of the first group being the first and second samples of the second group. The controller estimates a steady-state voltage of the first and second voltages using the sample groups, prior to the first and second voltages converging on actual steady-state voltage values. The controller executes a corresponding control action when the steady-state voltage estimate is stable or unstable relative to a defined stability threshold.
Abstract:
A system and method are disclosed for diagnosing an open circuit of a cell voltage sensing board. The board includes, for each cell, a line balancing resistor, a line sense resistor, and a gate. Each gate connects and disconnects a given line balancing resistor to and from a corresponding cell. A cell voltage is measured for a selected battery cell, and a controller determines if the selected battery cell is an uppermost or lowermost cell in the battery stack. A line sense resistance value is calculated for the selected battery cell using a first set of equations when the selected battery cell is the uppermost cell, a second set of equations when the selected battery cell is the lowermost cell, and a third set of equations when the selected battery cell is neither. A control action is executed when the calculated line sense resistance exceeds a calibrated resistance threshold.
Abstract:
A method of identifying a non-communicative battery Cell Sensing Board (CSB) within a plurality of battery CSBs arranged in a serial chain includes sequentially reconfiguring the serial chain of the battery CSBs to sequentially define each of the plurality of battery CSBs as a last battery CSB in a temporary test serial chain. Communication with the last battery CSB of each temporary test serial chain is sequentially established with a loopback feature of the battery CSBs. When a disruption in communication between the battery system manager controller and the last battery CSB of the current temporary test serial chain is detected, the last battery CSB of the current temporary test serial chain is identified as the non-communicative battery CSB.
Abstract:
A method for estimating the voltage of a battery element of a vehicle battery system is provided. The method comprises providing a balancing/sensing circuit having a series combination of a balancing switch and a balancing resistive element electrically connected in parallel with the battery element, and measuring the voltage across the combination of the balancing switch and balancing resistive element when the balancing switch is presumed to be in a “closed” state. The method further comprises deriving a compensated value for the measured voltage using empirically-derived data, wherein the compensated value compensates for a voltage drop occurring in the balancing/sensing circuit when the balancing switch is in the “closed” state and represents an estimate of the voltage of the battery element. A battery system is also provided that includes a battery element, a balancing/sensing circuit, a sensor, and a control module configured to perform the method described above.
Abstract:
A method of monitoring a performance level of a battery of a vehicle having an electronic control unit (ECU) includes enabling a charging diagnostic module (CDM) and determining, with the CDM, a charging status of the battery. The method also includes enabling a discharging diagnostic module (DDM) and determining, with the DDM, a discharging status of the battery. The charging status and the discharging status are recorded in a memory location of the ECU.