Abstract:
A passive entry-passive start portable device detection system. A portable device includes a transceiver. At least one vehicle-based transceiver broadcasts an interrogation signal. The transceiver of the portable device transmits a response signal in response to the interrogation signal. A controller determining at least a range of the portable device as a function of the time-of-flight of the interrogation and response signals. The controller controls a measurement duty cycle of the interrogation signal as a function of the determined range.
Abstract:
A method of planning communication network infrastructure includes calculating a potential capacity of a plurality of vehicular relay nodes in an area, wherein the plurality of vehicular relay nodes relay data between a plurality of portable devices and at least one base station. The method also includes calculating a potential data demand in the area for transferring data between the plurality of portable devices and the at least one base station. The method further includes determining whether a number of the at least one base station serving the area is sufficient by utilizing the potential capacity of the plurality of vehicular relay nodes in the area and the potential data demand in the area.
Abstract:
A system and method are provided for establishing a multipath connection between two endpoints. The method includes establishing a connection between a first of the two endpoints and one or more consumer devices, creating a virtual network interface in the first of the two endpoints for each of the one or more consumer devices connected to the first of the two endpoints, and transferring packets from the first of the two endpoints through each virtual network interface to a second of the two endpoints.
Abstract:
A method of planning communication network infrastructure includes calculating a potential capacity of a plurality of vehicular relay nodes in an area, wherein the plurality of vehicular relay nodes relay data between a plurality of portable devices and at least one base station. The method also includes calculating a potential data demand in the area for transferring data between the plurality of portable devices and the at least one base station. The method further includes determining whether the number of base stations serving the area is sufficient by utilizing the potential capacity of the plurality of vehicular relay nodes in the area and the potential data demand in the area.
Abstract:
Systems and methods for compiling lists of prospective access points for offloading cellular data traffic for a vehicle, and for selecting an access point to establish a non-cellular wireless Internet connection. Vehicular data mobile access involves properties and characteristics different from those of portable user data devices, and thus exhibit different criteria for cellular data offloading. Embodiments of the invention provide vehicle metrics to be used in conjunction with data requirement metrics in compiling the access lists and making the optimum selections based on the vehicle's predicted route. A predictive look-ahead is also provided, for use when predictive routing information is not available or is unreliable.
Abstract:
A method and system for selectively providing cellular offload services to mobile user data devices via vehicle-based access points. Subscribers and affiliates of vehicle-related online services register their user data devices for authorized connections. Vehicle metrics are used to determine the state of a vehicle (being driven or parked), and the metrics of the user device can be compared with the vehicle metrics to determine if the user device is inside the vehicle. Limiting access to authorized user devices reduces load on the vehicular access points and allows preventing the vehicular access points from being erroneously included on access point maps and thereby infecting the maps.