Abstract:
A powertrain system including an internal combustion engine rotatably coupled to a variator of a continuously variable transmission (CVT) is described. A method for controlling the CVT includes determining an actual speed ratio, a desired speed ratio and a commanded speed ratio. A total speed ratio change rate is determined based upon the actual speed ratio, the desired speed ratio and the commanded speed ratio, and a commanded speed ratio trajectory is determined based upon the desired speed ratio and the commanded speed ratio. A ratio change coefficient and a force ratio factor are determined based upon the commanded speed ratio trajectory, and a shift force is determined based upon the total speed ratio change rate and the ratio change coefficient. A primary pulley force and a secondary pulley force for the CVT are controlled based upon the shift force and the force ratio factor.
Abstract:
A system is provided for latching and draining a torque transmitting device. The system may include a clutch feed channel having an inlet portion and a clutch portion. The inlet portion is configured to provide hydraulic fluid from a pressurized source to the clutch portion. The clutch portion is configured to provide hydraulic fluid to a torque transmitting device. An inlet valve connects the inlet portion of the clutch feed channel to the clutch portion of the clutch feed channel. The inlet valve is configured to open to allow the hydraulic fluid to flow from the inlet portion to the clutch portion when the torque transmitting device is engaged. The inlet valve is configured to close and to trap hydraulic fluid within the torque transmitting device when the torque transmitting device is not actively pressurized. A multispeed transmission is also provided.
Abstract:
A clutch latching system is provided for latching and draining a torque transmitting mechanism. The latching clutch control system may include a latching valve, a release valve, and an accumulator. The clutch latching system may include a clutch feed channel configured to provide hydraulic fluid from a pressurized source to a torque transmitting device when the torque transmitting device is engaged and the engine is running. A latching valve connects the clutch feed channel to the torque transmitting device. The latching valve is configured to selectively trap pressurized hydraulic fluid within the torque transmitting device. A hydraulic pressure storage circuit configured to selectively provide pressurized hydraulic fluid to the latching valve to unlatch the latching valve. A multiple speed transmission is also provided.
Abstract:
A method for controlling a transmission includes the following steps: applying a first assist clutch to interconnect a first stationary member to a first planetary gear set of the transmission; applying a second assist clutch to interconnect a second stationary member to a second planetary gear set of the transmission, wherein the second planetary gear set is coupled to the output member of the transmission; applying a primary clutch to interconnect the first planetary gear set to a third stationary member; reducing a first pressure applied to the first assist clutch of the transmission by a first pressure calibration value; determining whether a gear lash has occurred; and reducing a second pressure applied to the second assist clutch of the transmission.
Abstract:
A transmission includes an input member, an output member, four planetary gear sets, and a plurality of torque transmitting mechanisms that are selectively engageable to establish at least ten forward speed ratios and at least one reverse speed ratio between the input member and the output member. The transmission further includes one or more locking mechanisms that engage one or more of the plurality of torque transmitting mechanisms during a start/stop event.
Abstract:
A transmission includes an input member, an output member, four planetary gear sets, and a plurality of torque transmitting mechanisms that are selectively engageable to establish at least ten forward speed ratios and at least one reverse speed ratio between the input member and the output member. The transmission further includes one or more locking mechanisms that engage one or more of the plurality of torque transmitting mechanisms during a start/stop event.
Abstract:
A valve assembly includes a valve body having an input in selective communication with an output, a latching piston disposed within the valve body, a balance spring disposed between the latching piston and the valve body, and a valve piston disposed within the valve body. The input communicates with the output when the valve piston is in a first position and the input does not communicate with the output when the valve piston is in a second position. A diaphragm spring is disposed between the latching piston and the valve piston. A holding spring is disposed between the valve piston and the valve body.
Abstract:
A system for control of a vehicle includes a plurality of vehicle actuators in electrical communication with a controller. The controller is programmed to determine a predicted path of the vehicle. The controller is further programmed to determine one or more vehicle level control parameters based at least in part on the predicted path of the vehicle. The one or more vehicle level control parameters includes a vehicle level suspension control parameter and a vehicle level motion control parameter. The controller is further programmed to adjust an operation of one or more suspension actuators of the plurality of vehicle actuators based at least in part on the vehicle level suspension control parameter. The controller is further programmed to adjust an operation of one or more motion actuators of the plurality of vehicle actuators based at least in part on the vehicle level motion control parameter.
Abstract:
A method detects unintended acceleration of a motor vehicle during a closed-loop speed control mode by determining external forces on the vehicle via a controller, and then calculating a desired acceleration using a measured vehicle speed and the external forces. The method includes determining an actual acceleration of the vehicle, including filtering a speed signal as a first actual acceleration value and/or measuring a second actual acceleration value using an inertial measurement unit (IMU). During the speed control mode, the method includes calculating an acceleration delta value as a difference between the desired acceleration and the actual acceleration, and then using the acceleration delta value to detect the unintended acceleration during the speed control mode. A powertrain system for the motor vehicle, e.g., an electric vehicle, includes the controller and one or more torque generating devices coupled to road wheels of the vehicle.
Abstract:
A continuously variable transmission control system includes a continuously variable transmission (CVT) including a primary variator pulley and a secondary variator pulley each including a set of pulley members defining a variable-width gap, and a flexible member positioned within the variable-width gap and movable to define a CVT ratio. The transmission control system also includes a primary pulley valve controlling a primary pulley pressure of a fluid to the primary variator pulley, a secondary pulley valve controlling a secondary pulley pressure of the fluid to the secondary variator pulley; and a pulley pressure control system configured to recognize and mitigate pressure oscillations occurring in the primary pulley pressure or in the secondary pulley pressure.