Vehicle perception system on-line diangostics and prognostics

    公开(公告)号:US10974730B2

    公开(公告)日:2021-04-13

    申请号:US16139782

    申请日:2018-09-24

    Abstract: A method of on-line diagnostic and prognostic assessment of an autonomous vehicle perception system includes detecting, via a sensor, a physical parameter of an object external to the vehicle. The method also includes communicating data representing the physical parameter via the sensor to an electronic controller. The method additionally includes comparing the data from the sensor to data representing the physical parameter generated by a geo-source model. The method also includes comparing results generated by a perception software during analysis of the data from the sensor to labels representing the physical parameter from the geo-source model. Furthermore, the method includes generating a prognostic assessment of a ground truth for the physical parameter of the object using the comparisons of the sensor data to the geo-source model data and of the software results to the geo-source model labels. A system for on-line assessment of the vehicle perception system is also disclosed.

    PERSONALIZATION SETTINGS BASED ON BODY MEASUREMENTS

    公开(公告)号:US20210039521A1

    公开(公告)日:2021-02-11

    申请号:US16535642

    申请日:2019-08-08

    Abstract: A system and method for personalization of adjustable features of a vehicle. The system includes a processor and an actuator. The processor detectors key points of a person from a two-dimensional image and predicts a pose of the person. The processor translates a respective position of the key points from a two-dimensional coordinate system to a three-dimensional coordinate system based in part on the pose and measurements of distances between the key points. The processor determines a baseline configuration of an adjustable feature of the vehicle based in part on measurements between the key points in the three-dimensional coordinate system. The processor causes an actuator to adjust the adjustable feature to conform to the baseline configuration.

    METHOD AND APPARATUS TO MONITOR AN ON-VEHICLE FLUIDIC SUBSYSTEM

    公开(公告)号:US20200066066A1

    公开(公告)日:2020-02-27

    申请号:US16107074

    申请日:2018-08-21

    Abstract: A fluidic subsystem disposed on a vehicle includes an electric motor, a motor driver, and a fluidic pump that is disposed in a fluidic circuit that is monitored by a pressure sensor. A controller includes an instruction set that is executable to dynamically observe operation of the fluidic subsystem, from which it determines a plurality of observed parameters associated with the operation of the fluidic subsystem and a plurality of estimated parameters associated with the fluidic subsystem. A plurality of fault isolation parameters are determined based upon the observed parameters and the estimated parameters, and a fault in the fluidic subsystem is isolated based upon the fault isolation parameters. The isolated fault is communicated via the controller.

    Online validation of LIDAR-to-LIDAR alignment and LIDAR-to-vehicle alignment

    公开(公告)号:US12174301B2

    公开(公告)日:2024-12-24

    申请号:US17350780

    申请日:2021-06-17

    Abstract: A LIDAR-to-LIDAR alignment system includes a memory and an autonomous driving module. The memory stores first and second points based on outputs of first and second LIDAR sensors. The autonomous driving module performs a validation process to determine whether alignment of the LIDAR sensors satisfy an alignment condition. The validation process includes: aggregating the first and second points in a vehicle coordinate system to provide aggregated LIDAR points; based on the aggregated LIDAR points, performing (i) a first method including determining pitch and roll differences between the first and second LIDAR sensors, (ii) a second method including determining a yaw difference between the first and second LIDAR sensors, or (iii) point cloud registration to determine rotation and translation differences between the first and second LIDAR sensors; and based on results of the first method, the second method or the point cloud registration, determining whether the alignment condition is satisfied.

    VEHICLE-ONBOARD COMPUTING ARCHITECTURE FOR SENSOR ALIGNMENT

    公开(公告)号:US20240095061A1

    公开(公告)日:2024-03-21

    申请号:US17947244

    申请日:2022-09-19

    CPC classification number: G06F9/466 G06F9/544

    Abstract: A computer-implemented method for aligning a sensor to reference coordinate system includes initiating a plurality of threads, each thread executes simultaneously and independent of each other. A first thread parses data received from the sensor and stores the parsed data in a data buffer. A second thread computes an alignment transformation using the parsed data to determine alignment between the sensor and the reference coordinate system. The computing includes checking that the data buffer contains at least predetermined amount of data. If at least the predetermined amount of data exists, an intermediate result is computed using the parsed data in the data buffer; otherwise, the second thread waits for the first thread to add more data to the data buffer. The second thread outputs the intermediate result into the data buffer. A third thread outputs the alignment transformation, in response to completion of alignment computations.

    METHODS AND SYSTEMS FOR CAMERA TO GROUND ALIGNMENT

    公开(公告)号:US20230260291A1

    公开(公告)日:2023-08-17

    申请号:US17651405

    申请日:2022-02-16

    Abstract: Methods and systems for a vehicle are provided. In one embodiment, the method includes: receiving image data defining a plurality of images associated with an environment of the vehicle; determining, by a processor, feature points within at least one image of the plurality of images; selecting, by the processor, a subset of the feature points as ground points; determining, by the processor, a ground plane based on the subset of feature points; determining, by the processor, a ground normal vector from the ground plane; determining, by the processor, the ground normal vector based on a sliding widow method; determining, by the processor, a camera to ground alignment value based on the ground normal vector; and generating, by the processor, second image data based on the camera to ground alignment value.

    ON-VEHICLE CAMERA ALIGNMENT MONITORING SYSTEM

    公开(公告)号:US20230215045A1

    公开(公告)日:2023-07-06

    申请号:US17567371

    申请日:2022-01-03

    Abstract: A system for on-vehicle camera alignment monitoring includes an on-vehicle camera in communication with a controller. The controller monitors vehicle operating parameters and camera signal parameters, and captures an image file from the on-vehicle camera. A first level analysis of the image file, the vehicle operating parameters, and the camera signal parameters is executed to detect dynamic conditions and image feature parameters that affect camera alignment. An error with one of the dynamic conditions or the image feature parameters that affects the camera alignment is detected. A second level analysis of the camera signal parameters is executed to identify a root cause indicating one of the dynamic conditions or the image feature parameters that affects the camera alignment based upon the error. A camera alignment-related fault is detected based upon the root cause, and vehicle operation is controlled based upon the camera alignment-related fault.

Patent Agency Ranking