Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, for each of multiple words or sub-words, audio data corresponding to multiple users speaking the word or sub-word; training, for each of the multiple words or sub-words, a pre-computed hotword model for the word or sub-word based on the audio data for the word or sub-word; receiving a candidate hotword from a computing device; identifying one or more pre-computed hotword models that correspond to the candidate hotword; and providing the identified, pre-computed hotword models to the computing device.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving audio data corresponding to an utterance, determining that the audio data corresponds to a hotword, generating a hotword audio fingerprint of the audio data that is determined to correspond to the hotword, comparing the hotword audio fingerprint to one or more stored audio fingerprints of audio data that was previously determined to correspond to the hotword, detecting whether the hotword audio fingerprint matches a stored audio fingerprint of audio data that was previously determined to correspond to the hotword based on whether the comparison indicates a similarity between the hotword audio fingerprint and one of the one or more stored audio fingerprints that satisfies a predetermined threshold, and in response to detecting that the hotword audio fingerprint matches a stored audio fingerprint, disabling access to a computing device into which the utterance was spoken.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving audio data corresponding to an utterance, determining that the audio data corresponds to a hotword, generating a hotword audio fingerprint of the audio data that is determined to correspond to the hotword, comparing the hotword audio fingerprint to one or more stored audio fingerprints of audio data that was previously determined to correspond to the hotword, detecting whether the hotword audio fingerprint matches a stored audio fingerprint of audio data that was previously determined to correspond to the hotword based on whether the comparison indicates a similarity between the hotword audio fingerprint and one of the one or more stored audio fingerprints that satisfies a predetermined threshold, and in response to detecting that the hotword audio fingerprint matches a stored audio fingerprint, disabling access to a computing device into which the utterance was spoken.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for recognizing speech in an utterance. The methods, systems, and apparatus include actions of receiving an utterance and obtaining acoustic features from the utterance. Further actions include providing the acoustic features from the utterance to multiple speech locale-specific hotword classifiers. Each speech locale-specific hotword classifier (i) may be associated with a respective speech locale, and (ii) may be configured to classify audio features as corresponding to, or as not corresponding to, a respective predefined term. Additional actions may include selecting a speech locale for use in transcribing the utterance based on one or more results from the multiple speech locale-specific hotword classifiers in response to providing the acoustic features from the utterance to the multiple speech locale-specific hotword classifiers. Further actions may include selecting parameters for automated speech recognition based on the selected speech locale.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for selecting, from among a collection of videos, a set of candidate videos that (i) are identified as being associated with a particular song, and (ii) are classified as a cappella video recordings; extracting, from each of the candidate videos of the set, a monophonic melody line from an audio channel of the candidate video; selecting, from among the set of candidate videos, a subset of the candidate videos based on a similarity of the monophonic melody line of the candidate videos of the subset with each other; and providing, to a recognizer that recognizes songs from sounds produced by a human voice, (i) an identifier of the particular song, and (ii) one or more of the monophonic melody lines of the candidate videos of the subset.
Abstract:
Methods, including computer programs encoded on a computer storage medium, for collaborative language model biasing. In one aspect, a method includes receiving (i) data including a set of terms associated with a target user, and, (ii) from each of multiple other users, data including a set of terms associated with the other user, selecting a particular other user based at least on comparing the set of terms associated with the target user to the sets of terms associated with the other users, selecting one or more terms from the set of terms that is associated with the particular other user, obtaining, based on the selected terms that are associated with the particular other user, a biased language model, and providing the biased language model to an automated speech recognizer.
Abstract:
In one example, a system comprises at least one processor configured to determine an indication of an audio portion of video content, determine, based at least in part on the indication, one or more candidate audio tracks, determine, based at least in part on the one or more candidate audio tracks, one or more search terms, and provide a search query that includes the search terms. The at least one processor may be further configured to, in response to the search query, receive a response that indicates a number of search results, wherein each one of the search results is associated with content that includes the one or more search terms, select, based at least in part on the response, a particular audio track of the one or more candidate audio tracks, and send a message that associates the video content with at least the particular audio track.
Abstract:
Systems and methods are provided herein relating to real-time detection of inactive broadcasts during live stream ingestion. Both audio fingerprints and video fingerprints can be dynamically and continuously generated for a live stream ingestion. Sets of video fingerprints and sets of audio fingerprints can be continuously generated based on common successive overlapping time windows. A set of audio fingerprints and a set of video fingerprints can be associated with each time window. Video similarity scores and audio similarity scores can be generates for each time window to determine whether the stream is inactive or static during the time window. Only fingerprints relating to an active broadcast can be indexed in a fingerprint index.
Abstract:
A matching system receives probe audio samples for comparison to references of a data store. Comparisons are generated to determine a sufficient match for a portion or a first amount of the probe sample. Ranking scores are assigned to the resulting match references. The match references are retained, unless meeting a score threshold. Comparisons are continually generated with second amounts of the probe sample and the retained references are updated with further matching references assigned ranking scores. The retained results are merged and determined to satisfy a score threshold for release as outputted results for matching references.
Abstract:
The present disclosure provides methods and apparatuses that enable an apparatus to identify sounds from short samples of audio. The apparatus may capture an audio sample and create several audio signals of different lengths, each containing audio from the captured audio sample. The apparatus my process the several audio signals in an attempt to identify features of the audio signal that indicate an identification of the captured sound. Because shorter audio samples can be analyzed more quickly, the system may first process the shortest audio samples in order to quickly identify features of the audio signal. Because longer audio samples contain more information, the system may be able to more accurately identify features in the audio signal in longer audio samples. However, analyzing longer audio signals takes more buffered audio than identifying features in shorter signals. Therefore, the present system attempts to identify features in the shortest audio signals first.