Abstract:
A storage battery includes a negative electrode including, as an active material, at least one of a metal capable of forming a dendrite and a metal compound thereof, a positive electrode, a separator, and an electrolyte containing an additive. In the storage battery, a concentration of the additive in the electrolyte in a region on a side of the negative electrode defined by the separator is higher than a concentration of the additive in a region on a side of the positive electrode.
Abstract:
An alkaline storage battery includes a spiral electrode group with a positive plate and a negative plate spirally wound with a separator interposed therebetween. The separator includes a plurality of sulfone group-containing regions. The plurality of sulfone group-containing regions are separated from one another in a winding direction, and disposed to face the positive plate or the negative plate.
Abstract:
A nickel hydroxide for an alkaline secondary battery, wherein the nickel hydroxide contains α-nickel hydroxide particles and β-nickel hydroxide particles, and the ratio of the β-nickel hydroxide to the total amount of the nickel hydroxide is less than 75% by mass.
Abstract:
Disclosed is a negative electrode for an alkaline secondary battery, which can suppress elution of iron to improve the long-period storage property of the battery capacity even under conditions in which elution of iron in a substrate into an electrolyte solution tends to occur, and which can also suppress lowering of initial capacity and increase in internal resistance. Even under conditions in which the elution of iron in the substrate into an electrolyte solution tends to occur, including a case where there is a thin conductive protecting layer at the surface or where the conductive protecting layer has defects, by adding magnesium or a magnesium compound to the negative electrode for an alkaline secondary battery (excluding the case where magnesium is contained as a constituent element of a hydrogen storage alloy), the elution of iron can be suppressed, and thereby, the long-period storage property of the battery capacity can be improved and the lowering of the initial capacity and the increase in internal resistance can be suppressed.
Abstract:
Provided is a hydrogen storage alloy which is characterized in that two or more crystal phases having different crystal structures are layered in a c-axis direction of the crystal structures. The hydrogen storage alloy is further characterized in that a difference between a maximum value and a minimum value of a lattice constant a in the crystal structures of the laminated two or more crystal phases is 0.03 Å or less.
Abstract:
A nickel-metal hydride storage battery includes a negative electrode containing a hydrogen storage alloy and an electrolyte solution. The hydrogen storage alloy has a CaCu5-type crystal structure and contains at least a Ni element and a rare earth element. The rare earth element is partly substituted with an Y element, and the electrolyte solution contains NaOH in an amount of 2.0 M or more.
Abstract:
A cylindrical battery including: a battery case having a cylindrical shape; an electrode group disposed in the battery case, including a positive electrode, a negative electrode, and a separator, and having a pair of flat outer side surfaces opposed to each other; and a spacer disposed between an inner peripheral surface of the battery case and each of the flat outer side surfaces of the electrode group. The spacer has a case contact portion that extends continuously from a first axial end to a second axial end and is in contact with the inner peripheral surface of the battery case, and the case contact portion is formed with a communicating portion that communicates spaces partitioned by the case contact portion.
Abstract:
A positive electrode material for an alkaline storage battery includes: nickel hydroxide; and at least one of a Sr compound, a Ca compound, and a compound of at least one element selected from the group consisting of Y and lanthanide elements of atomic number 62 (Sm) to 71 (Lu). An A element as at least one element selected from the group consisting of Al, Ga, Mn, and Mo is held in solid solution in a crystallite of the nickel hydroxide. The content of the A element, [A]/([Ni]+[A]), is 5% or more and 16% or less (where [A] represents the molarity of the A element in the crystallite and [Ni] represents the molarity of Ni). The nickel hydroxide includes α-phase nickel hydroxide and β-phase nickel hydroxide.