Abstract:
Systems and methods for monitoring turbine component deformation are provided. The turbine component has an exterior surface. A method includes directly measuring a strain sensor configured on the exterior surface of the turbine component along an X-axis, a Y-axis and a Z-axis to obtain X-axis data points, Y-axis data points, and Z-axis data points. The X-axis, Y-axis and Z-axis are mutually orthogonal. The method further includes assembling a three-dimensional profile of the strain sensor based on the X-axis data points, Y-axis data points and Z-axis data points.
Abstract:
Methods for manufacturing passive strain indicator on turbine components include providing a turbine component comprising an exterior surface, and, depositing a ceramic material onto a portion of the exterior surface to form a passive strain indicator comprising at least two reference points.
Abstract:
Methods for monitoring a components include locating a plurality of machined surface features on the component, locating at least one reference point, and measuring a plurality of first distances between the plurality of machined surface features and the at least one reference point.
Abstract:
Methods for monitoring components are provided. A component has an exterior surface. A method includes locating a centroid of a reference feature configured on the component, and measuring a first value of a characteristic of the reference feature relative to the centroid at a first time. The method further includes measuring a second value of the characteristic relative to the centroid at a second time after the first time, and comparing the first value and the second value.
Abstract:
Data acquisition devices for analyzing reference objects and systems for monitoring turbine component deformation are provided. A data acquisition device has a longitudinal axis and includes a lens assembly and an image capture device in communication with the lens assembly for receiving and processing light from the lens assembly to generate images. The data acquisition device further includes a light source and a light tube coupled at a rear end to the light source. The light tube extends along the longitudinal axis between a front end and the rear end, and is operable to transport light from the light source therethrough and emit the light from the front end. The data acquisition device further includes an actuator operable to activate the image capture device and the light source.
Abstract:
Components can comprise a substrate, a strain sensor comprising at least two reference points disposed on the substrate, and one or more thermally reactive features disposed on the substrate proximate the strain sensor, wherein the one or more thermally reactive features react to one or more elevated temperatures.
Abstract:
Systems and methods for monitoring components are provided. A component has an exterior surface and a surface feature configured on the component. A system includes a data acquisition device for analyzing the surface feature. The system further includes an alignment assembly for aligning the data acquisition device and the surface feature. The alignment assembly includes a target feature configurable on the component and a guide feature configured with the data acquisition device. Alignment of the guide feature with the target feature aligns the data acquisition device and the surface feature.
Abstract:
Methods for manufacturing passive strain indicator on turbine components include providing a turbine component comprising an exterior surface, and, depositing a ceramic material onto a portion of the exterior surface to form a passive strain indicator comprising at least two reference points.
Abstract:
Data acquisition devices for analyzing reference objects and systems for monitoring turbine component deformation are provided. A data acquisition device has a longitudinal axis and includes a lens assembly and an image capture device in communication with the lens assembly for receiving and processing light from the lens assembly to generate images. The data acquisition device further includes a light source and a light tube coupled at a rear end to the light source. The light tube extends along the longitudinal axis between a front end and the rear end, and is operable to transport light from the light source therethrough and emit the light from the front end. The data acquisition device further includes an actuator operable to activate the image capture device and the light source.
Abstract:
Methods for manufacturing strain sensors on turbine components include providing a turbine component comprising an exterior surface, depositing a ceramic material onto a portion of the exterior surface, and ablating at least a portion of the ceramic material to form a strain sensor comprising at least two reference points.