Abstract:
Methods and systems for encoding and compressing 3D object data models are provided. An example method may involve receiving 3D mesh data for an object that includes geometry coordinates for a surface of the object. Additionally, material properties may be associated with the geometry coordinates. The method may also include identifying multiple portions of the mesh data based on the material properties associated with the geometry coordinates. For example, a given group of adjacent geometry coordinates having common material properties may be identified as a given portion. For at least some of the identified portions of the mesh data, the method may further include encoding information related to an identified portion of the mesh data and compressing the encoded information into a file of compressed geometric data.
Abstract:
Methods and systems for writing, interpreting, and translating three-dimensional (3D) scenes are provided. An example method may involve accessing data associated with a three-dimensional (3D) scene that includes one or more objects of the 3D scene and one or more rendering effects for the one or more objects. Requests for assets and instructions associated with rendering the one or more objects based on the data associated with the 3D scene may be determined and sent to a server. Additionally, the method may include receiving from the server assets and instructions that facilitate rendering the one or more objects based on the one or more rendering effects. According to the method, the one or more objects of the 3D scene may be rendered based on the received instructions and the received assets.
Abstract:
Systems and devices for acquiring imagery and three-dimensional (3D) models of objects are provided. An example device includes a platform configured to enable an object to be positioned thereon, and a plurality of scanners configured to capture geometry and texture information of the object when the object is positioned on the platform. A first scanner is positioned below the platform so as to capture an image of a portion of an underside of the object, a second scanner is positioned above the platform, and a third scanner is positioned above the platform and offset from a position of the second scanner. The scanners are positioned such that each scanner is outside of a field of view of other scanners. Scanners may include a camera, a light source, and a light-dampening element, and the device may include a control module configured to operate the scanners to individually scan the object.
Abstract:
Systems are provided to facilitate imaging of a person or other target in an environment by providing modulated illumination to the target and to other aspects of the environment. Modulated illumination is provided to the target such that the target receives more illumination when a camera is capturing images of the target than during other periods of time. Modulated illumination is provided to background objects or other portions of the environment of the target such that the background or other non-target elements of the environment receive less illumination when the camera is capturing images than during other periods of time. In this way, imaging of a target can be improved by increasing effective illumination of the target while decreasing glare and other effects of illumination of background objects. The illumination can be modulated at a sufficiently high frequency that the illumination appears, to the human eye, to be substantially constant.
Abstract:
Methods and systems for determining the shape of an object based on shadows cast by the object are described. An example method may include receiving a plurality of images of an object casting a shadow. Each image may include a shadow cast by the object as the object is illuminated by a light source that moves over a plurality of positions. The method may further include determining, by a computing device, respectively for each image of the plurality of images a two-dimensional (2D) silhouette of the object and a respective position of the light source relative to the object. According to the method, a three-dimensional (3D) object data model of the object may be generated by the computing device based on the 2D silhouette of the object and the respective position of the light source relative to the object for each image of the plurality of images.
Abstract:
Methods and devices are disclosed for monitoring environmental conditions in one or more environments. In one embodiment, the method includes maintaining a plurality of environmental-condition thresholds, each of which corresponds to an environmental condition and is predetermined based on data corresponding to the environmental condition that is received from a plurality of robots. The method further includes receiving from a first robot first data corresponding to a first environmental condition in a first environment. The method may still further include making a first comparison of the first data and a first environmental-condition threshold corresponding to the first environmental condition and, based on the first comparison, triggering a notification. Triggering the notification may comprise transmitting to the robot instructions to transmit the notification to at least one of a call center and a remote device.
Abstract:
Methods and devices are disclosed for monitoring environmental conditions in one or more environments. In one embodiment, the method includes maintaining a plurality of environmental-condition thresholds, each of which corresponds to an environmental condition and is predetermined based on data corresponding to the environmental condition that is received from a plurality of robots. The method further includes receiving from a first robot first data corresponding to a first environmental condition in a first environment. The method may still further include making a first comparison of the first data and a first environmental-condition threshold corresponding to the first environmental condition and, based on the first comparison, triggering a notification. Triggering the notification may comprise transmitting to the robot instructions to transmit the notification to at least one of a call center and a remote device.
Abstract:
Methods and systems for multi-modal three-dimensional (3D) scanning of objects are described. An example method may include receiving, from a scanning system, 3D information associated with an object having a first resolution. A region of interest of the object may be determined by a processor based on the 3D information associated with the object. Additionally, instructions for operating the scanning system to determine additional information associated with the region of interest of the object may be determined. The additional information associated with the region of interest may have a second resolution that is higher than the first resolution. The instructions may be provided to the scanning system to determine the additional information associated with the region of interest of the object.
Abstract:
Methods and systems are provided for determining and transmitting applicable lighting information, applicable viewing perspective, and a 3D model for an object in response to a search query. An example method includes receiving, at a server, a search query regarding an object. A 3D model for the object is determined. The 3D model includes three-dimensional shape information about the object. The method also includes determining, based on a plurality of stored images of the object, at least one applicable light field and at least one applicable viewing perspective. A search query result is transmitted from the server. The search query result may include the 3D model, the applicable light field(s), and the applicable viewing perspective(s). A server and a non-transitory computer readable medium are also disclosed that could perform a similar method.