Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method for operating an electronic device is provided, in which the device detects contact with a user's finger, scans its fingerprint and sets the orientation of the electronic device based on the fingerprint (e.g., whether is from the user's left hand or right hand) and on an angle of the fingerprint with respect to the device. This allows the electronic device to determine its orientation with respect to the user rather than with respect to the environment.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method on an electronic device is described. A touch screen display of the electronic device is actively controlled in a higher-power mode of operation. Actively controlling the touch screen display in the higher-power mode is discontinued to enter a lower-power mode of operation. In the lower-power mode: at least one first control signal is provided to the touch screen display; in response to the at least one first control signal, a first portion of the touch screen display is activated and a first portion of a graphic is displayed on a first area of the touch screen display within the first portion; occurrence of a first user interaction that corresponds to the first portion of the graphic during the display of the first portion of the graphic is determined; and user interaction data is stored for the first portion of the graphic based on the first user interaction determination.
Abstract:
An electronic device performs a method for advertising using a frequency of spoken word database. The method includes sending a plurality of observation phrases to a plurality of mobile devices and receiving, from a subset of the plurality of mobile devices for each observation phrase in a subset of the plurality of observation phrases, at least one utterance statistic that indicates how often the utterance of observation phrase was detected by the subset of the plurality of mobile devices over a time period. The method further includes building a frequency of spoken word database including the subset of the plurality of observation phrases each having associated therewith a set frequency of utterance values derived from the at least one utterance statistic received for that observation phrase. The frequency of spoken word database is used to determine at least one advertisement and linked observation phrase to send to a mobile device.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
An electronic device has a combination touch sensor (such as a fingerprint reader) and mechanical switch (actuated, for example, by a button press). The electronic device carries out various functions according to whether the touch sensor is being touched, the mechanical switch is being actuated, the electronic device is face up or face down, the state of the electronic device (awake or in sleep mode), and the function that the electronic device is currently carrying out.
Abstract:
An electronic device has an imaging device (such as a still camera or video camera) and is capable of displaying a viewfinder on one side or multiple sides of the device. The device may determine the side or sides on which to display the viewfinder based on factors such as user input, object proximity, grip detection, accelerometer data, and gyroscope data. In one implementation, the device has multiple imaging devices and can select which imaging device to use to capture an image based on the above factors as well.