摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
A bidirectional communications interface is provided that connects a transmitter and a receiver, or a transceiver, to a transmission line. Under an embodiment, the bidirectional interface generates positive and negative polarity data signals using two separate differential amplifiers that receive differential signal pairs from each side of a differential link to the transmission line and the transmitter. The bidirectional interface controls common mode rejection in each of the separate differential amplifiers using bias signals generated in response to an output common mode feedback voltage from each of the differential amplifiers. An output amplifier combines the positive and negative polarity data signals to form single-ended output logic signals. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
A bidirectional communications interface is provided that connects a transmitter and a receiver, or a transceiver, to a transmission line. Under an embodiment, the bidirectional interface generates positive and negative polarity data signals using two separate differential amplifiers that receive differential signal pairs from each side of a differential link to the transmission line and the transmitter. The bidirectional interface controls common mode rejection in each of the separate differential amplifiers using bias signals generated in response to an output common mode feedback voltage from each of the differential amplifiers. An output amplifier combines the positive and negative polarity data signals to form single-ended output logic signals. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
An output amplifier is provided for use in a bidirectional communications interface, for example, connecting a transmitter and a receiver to a transmission line. The output amplifier includes a differential amplifier pair connected to output circuitry. The differential amplifier pair receives differential data signal pairs from each of a transmission line and a transmitter. The output circuitry receives signals from the differential amplifier pair and, in response, forms single-ended output logic signals. The output amplifier suppresses electronic input noise throughput using an asymmetric transfer characteristic that offsets output signal logic levels with respect to input noise signal levels. The asymmetric transfer characteristic is produced by skewing a transfer characteristic of the differential amplifier pair using an asymmetrical transistor configuration at an output side of the differential amplifier pair. The output logic signals represent data received on the transmission line, and are provided to the receiver.
摘要:
The present invention relates to a serial interface transmission system with more than one data line, in which the transmitted data has in-band and out-of-band characters. More particularly, the present invention relates to methods and systems for sending side channel data over a high-speed digital communications link, e.g., a video link. One embodiment of the invention provides a high-speed digital transmitter capable of sending side channel data. The transmitter includes a channel zero encoder, a multiplexer, data enable out (DEout) control logic, and a channel one encoder. The channel one encoder receives input from the channel one multiplexer and the channel one DEout control logic. Another embodiment of the invention provides a high-speed digital receiver capable of receiving side channel data. The receiver includes a channel zero decoder, a channel one decoder, DEI signal and FIFO control signal recovery logic, and a channel one de-multiplexer. The DEI signal and FIFO control signal recovery logic receives input from the channel one decoder. Similarly, the channel one demultiplexer receives input from the channel one decoder.
摘要:
A system and method for measuring and utilizing a pseudo pixel error rate in digital data transmission is disclosed. As an alternative to measuring actual pixel error rate measurement, the present invention uses a pseudo pixel error rate detection scheme where the errors occurred in the special character patterns used in data encoding are measured. A particular embodiment uses a de-glitch filter for filtering the glitches from an unfiltered data enable (DE), a delay for delaying the unfiltered DE to match the delay of the de-glitch filter, and a comparator for comparing the unfiltered DE and the filtered DE to determine the occurrence of an error. It further includes a counter to count the errors occurred.
摘要:
The system preferably includes a unique transmitter that sends both clock and data signals over the same transmission line. The receiver uses the same transmission line to send data signals back to the transmitter. The transmitter comprises a clock generator, a decoder and a line interface. The clock generator produces a clock signal that includes a variable position falling edge. The falling edge position is decoded by the receiver to extract data from the clock signal. The receiver comprises a clock re-generator, a data decoder and a return channel encoder. The clock re-generator monitors the transmission line, receives signals, filters them and generates a clock signal at the receiver from the signal on the transmission line. The return channel encoder generates signals and asserts them on the transmission line. The signal is asserted or superimposed over the clock & data signal provided by the transmitter.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include a gate electrode formed on a substrate; an active layer made of an oxide semiconductor and insulated from the gate electrode by a gate insulating layer; source and drain electrodes coupled to the active layer; and an interfacial stability layer formed on one or both surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristic as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
A thin film transistor (TFT) including a gate electrode, an active layer, and source and drain electrodes. The active layer includes contact regions that contact the source and drain electrodes, which are thinner than a remaining region of the active layer. The contact regions reduce the contact resistance between the active material layer and the source and drain electrodes.