Abstract:
A mold assembly system includes a mold assembly that defines an infiltration chamber used for forming an infiltrated metal-matrix composite (MMC) tool. Reinforcement materials are deposited within the infiltration chamber, and a binder material is used to infiltrate the reinforcement materials. At least one preformed mesh is positioned within the infiltration chamber and embedded within the reinforcement materials. The at least one preformed mesh includes a porous body and provides skeletal reinforcement to the infiltrated MMC tool following infiltration.
Abstract:
A mold assembly system includes a mold assembly that defines an infiltration chamber used for forming an infiltrated metal-matrix composite (MMC) tool, and at least one boundary form positioned within the infiltration chamber and segregating the infiltration chamber into at least a first zone and a second zone. Reinforcement materials are deposited within the infiltration chamber and include a first composition loaded into the first zone and a second composition loaded into the second zone. At least one binder material infiltrates the first and second compositions, wherein infiltration of the first and second compositions results in differing mechanical, chemical, physical, thermal, atomic, magnetic, or electrical properties between the first and second zones in the infiltrated MMC tool.
Abstract:
A low surface friction body for a drill bit includes a matrix drill bit body. The body includes a particulate phase having a friction-reducing additive, and a binding material that bonds the particulate phase using a suitable manufacturing process such as selective laser sintering. The particulate phase may include tungsten carbide, the friction-reducing additive may be polytetrafluoroethylene, and the binder material may be copper or cobalt. The friction-reducing additive is distributed throughout at least a portion of the drill bit body that includes the surface that will come into contact with drill cuttings and drilling fluid during operation. The molecular properties of the friction-reducing additive result in a drill bit body having a surface that is resistant to sticking even after enduring chipping and other types of wear.
Abstract:
A hard composite composition may comprise a binder and a polymodal blend of matrix powder. The polymodal blend of matrix powder may have at least one first local maxima at a particle size of about 0.5 nm to about 30 μm, at least one second local maxima at a particle size of about 200 μm to about 10 mm, and at least one local minima between a particle size of about 30 μm to about 200 μm that has a value that is less than the first local maxima.
Abstract:
A hard composite composition may comprise a binder and a polymodal blend of matrix powder. The polymodal blend of matrix powder may have at least one first local maxima at a particle size of about 0.5 nm to about 30 μm, at least one second local maxima at a particle size of about 200 μm to about 10 mm, and at least one local minima between a particle size of about 30 μm to about 200 μm that has a value that is less than the first local maxima.
Abstract:
A metal matrix composite tool includes a body having hard composite portion that includes reinforcing particles dispersed in a binder material. At least some of the reinforcing particles comprise a monolithic particle structure including a core having irregular outer surface features integral with the core.
Abstract:
Tools, for example, fixed cutter drill bits, may be manufactured to include hard composite portions having reinforcing particles dispersed in a continuous binder phase and auxiliary portions that are more machinable than the hard composite portions. For example, a tool may include a hard composite portion having a machinability rating 0.2 or less; and an auxiliary portion having a machinability rating of 0.6 or greater in contact with the hard composite portion. The boundary or interface between the hard composite portion and the auxiliary portion may be designed so that upon removal of the most or all of the auxiliary portion the resultant tool has a desired geometry without having to machine the hard composite portion.
Abstract:
A metal matrix composite tool that includes a hard composite portion comprising a reinforcement material infiltrated with a binder material, wherein the reinforcement material comprises a refractory metal component dispersed with reinforcing particles, wherein a surface roughness of the reinforcing particles is at least two times greater than the refractory metal component, wherein the refractory metal component has a failure strain of at least 0.05 and a shear modulus of 200 GPa or less, and wherein the reinforcing particles have a failure strain of 0.01 or less but at least five times less than the failure strain of the refractory metal component, and the reinforcing particles have a shear modulus of greater than 200 GPa and at least two times greater than the shear modulus of the refractory metal component. The reinforcing particles may comprise an intermetallic, a boride, a carbide, a nitride, an oxide, a ceramic, and/or a diamond.
Abstract:
An earth-boring drill bit includes a bit body having a powder component and a binder. The powder component includes a plurality of nanotubes disposed on a surface of at least one particle of the powder component.
Abstract:
A hard composite composition may comprise a binder and a polymodal blend of matrix powder. The polymodal blend of matrix powder may have at least one first local maxima at a particle size of about 0.5 nm to about 30 μm, at least one second local maxima at a particle size of about 200 μm to about 10 mm, and at least one local minima between a particle size of about 30 μm to about 200 μm that has a value that is less than the first local maxima.