Abstract:
An airplane is provided. The airplane includes a vapor cycle air conditioning system that receives outside air, a bleed system with at least one port, and an electric fan. A source of outside air when the airplane is on ground is forced air from the electric fan. The source of the outside air when the airplane is at cruise is bleed air from the at least one port.
Abstract:
An aircraft is provided. The aircraft includes a pressurized volume and an air conditioning system. The air conditioning system operates in a first mode or a second mode. The first mode includes when a first medium and a second medium and are mixed and provided to the pressurized volume. The second mode includes when only the first medium is provided to the pressurized volume.
Abstract:
An airplane is provided. The airplane includes a pressurized compartment and an environmental control system. The environmental control system includes a compressing device. The compressing device includes a compressor and a turbine. The airplane also includes a first flow of first medium configured to enter the pressurized compartment and a second flow of the first medium configured to enter the turbine.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers. The compressing device is bypassed based on the preparing in parallel the medium for the chamber, which in turn enables the compressing device to windmill. Therefore, the system employs at least one mechanism to prevent components of the compressing device from windmilling.
Abstract:
A system is provided. The system includes a first medium at a first pressure, a second medium at a second pressure, and a medium conditioning sub-system. The medium conditioning sub-system includes a compressor, a first heat exchanger, a second heat exchanger, and a turbine. The turbine receives the first medium and the second medium.
Abstract:
A system for an aircraft is provided. The system includes a compressing device and at least one heat exchanger. The compressing device includes a compressor, a turbine downstream of the compressor, and an electric motor coupled to the turbine and the compressor. Further, the compressor includes a high rotor backsweep. The system can be an air conditioning system.
Abstract:
A system is provided. The system includes an inlet providing a first medium; a compressing device comprising a compressor, and at least one heat exchanger located downstream of the compressor. The compressing device is in communication with the inlet providing the first medium. The at least one heat exchanger includes a first pass and a second pass. An outlet of the first pass of the at least one heat exchanger is in fluid communication with an inlet of the compressor.
Abstract:
A heat exchanging valve arrangement includes, a manifold defining a chamber, a first passageway, a second passageway, a third passageway, and a fourth passageway, and a member movable relative to the manifold configured to define fluidic communication between the first passageway and the second passageway when in a first position and between the first passageway and the third passageway when in a second position, fluid is flowable into the chamber through the fourth passageway such that fluid is exposed to surfaces of the member regardless of whether the member is in the first position or the second position.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers. The compressing device is bypassed based on the preparing in parallel the medium for the chamber, which in turn enables the compressing device to windmill. Therefore, the system employs at least one mechanism to prevent components of the compressing device from windmilling.
Abstract:
A bleed air supply system configured to supply bleed air from an engine to an environmental control system (ECS) pack is provided including a high pressure port configured to bleed air from a high spool of the engine. An intermediate pressure port is configured to bleed air from the high spool of the engine. The bleed air at the intermediate pressure port has a pressure less than the bleed air at the high pressure port. A precooler is fluidly coupled to the ECS pack, the high pressure port and the intermediate pressure port. Bleed air from the high pressure port and the intermediate pressure port is conditioned in the precooler before being provided to the ECS pack. A low pressure port is configured to bleed air from a low spool of the engine. The bleed air from the low pressure port bypasses the precooler and is supplied directly to the ECS pack.