Abstract:
A fuel cell and a method for producing the same are provided. The fuel cell includes a membrane electrode assembly and a gas diffusion layer that is disposed at each of opposite surfaces of the membrane electrode assembly, and includes a plurality of compressed parts that are formed by pressure at positions spaced out at predetermined intervals on the gas diffusion layer. The fuel cell further includes a separator that is in contact with an outer surface of the gas diffusion layer, and has a plurality of land parts that protrude toward the gas diffusion layer, and a plurality of channel parts that form flow paths between the land parts. The land parts respectively protrude toward the compressed parts of the gas diffusion layer to come in contact with the compressed parts.
Abstract:
A fuel cell is provided which includes a catalyst layer to which hydrogen gas or air are introduced through both surfaces thereof a first separator disposed at a first side of the catalyst layer and including a plurality of first channels such that a first reactant among hydrogen gas or air flows; and a second separator disposed at the second side of the catalyst layer and including a plurality of second channels disposed in a direction perpendicular to the first channels. Particularly, each of the second channels includes a plurality of ventilation apertures such that a second reactant among the hydrogen and the air flows in a direction perpendicular to the second channels.
Abstract:
A separator assembly for a fuel cell having an anode separator, a cathode separator, a cooling surface frame, and a gasket. In particular, the cooling surface frame is integrally bonded between peripheral portions of the anode separator and the cathode separator. Additionally, the gasket encloses the peripheral portions of the anode separator and the cathode separator between which the cooling surface frame is interposed.
Abstract:
A method for manufacturing a separator of a fuel cell stack includes: forming a gasket on the separator of the fuel cell stack; masking a surface of the separator except for a region of the surface of the separator on which the gasket is formed; and inserting the partially masked separator into a chamber to cross-link the gasket.
Abstract:
Disclosed is a fuel cell with a porous material-gasket integrated structure, which can facilitate the flow of gas and water by stacking a porous material-gasket integrated structure, in which a porous material and a gasket are integrally molded, on a separator. In particular, the present invention provides a fuel cell with a porous material-gasket integrated structure, in which a porous material and a gasket are integrally molded and stacked on a separator such that the porous material is located between a manifold, through which gas is supplied, and a reaction surface, where an electrochemical reaction takes place, so as to serve as a diffuser for gas fed through the manifold.
Abstract:
A fuel cell that includes a membrane-electrode assembly and separation plates disposed on both sides of the membrane-electrode assembly is provided. The fuel cell includes barrier ribs formed in reaction surfaces of the separation plates corresponding to the membrane-electrode assembly and configured to partition the reaction surfaces into a plurality of reaction regions. A micropore body is installed between the separation plate and the membrane-electrode assembly. The micropore body includes porous units disposed in the reaction region, and a connection unit integrally coupled to the porous units and flatly contacts the barrier ribs.
Abstract:
A gasket for a fuel cell having plurality of protrusions coupled to a surface of a separation plate of the fuel cell and protruding from an air-tight line blocking movement between materials flowing along a plurality of manifolds, in a length direction of the separation plate is provided. In particular, each of the plurality of protrusions includes a groove having a set width.
Abstract:
A fuel cell stack including a dummy cell for effectively discharging condensate water of the stack is provided. At least one cathode/anode dummy cell is stacked between a reaction of a stack power generator and end plates at both ends of the stack to discharge water out of stack. An automation process of the whole stack according to a simplified stack configuration can be achieved.
Abstract:
The present invention provides a fuel cell separator with a gasket manufactured by integrally forming a gasket on one side of a separator; independently injection molding a frame gasket on a frame such that a first airtight portion covers the entire surface of the frame to maintain the shape of the frame gasket and a second airtight portion projects upward and downward from both ends of the first airtight portion; and bringing the first airtight portion of the frame gasket into contact with the other side of the separator with the gasket formed on one side thereof. To create a fuel cell stack in certain embodiments, the invention stacks the second airtight portion of the frame gasket on another second airtight portion of an adjacent unit cell with a membrane-electrode assembly interposed therebetween.
Abstract:
A slip sheet for a fuel cell stack that includes a plurality of spaced fluid channel support protrusions protruding from a main body, at portions which face fluid channel protrusions of a separator plate in such a manner that the spaced fluid channel support protrusions come into contact with the fluid channel protrusions of the separator plate.