摘要:
An acoustic wave element includes a piezoelectric body, first and second interdigital transducer (IDT) electrodes provided on an upper surface of the piezoelectric body, and a first dielectric layer provided on the upper surface of the piezoelectric body to cover the first and second IDT electrodes. The first dielectric layer has a first part directly above the first IDT electrode and a second part directly above the second IDT electrode. The height of an upper surface of the second part of the first dielectric layer is larger than the height of an upper surface of the first part of the first dielectric layer. This acoustic wave element has a preferable temperature characteristic and electromechanical coupling factor.
摘要:
An IDT electrode includes a first electrode layer mainly made of Mo disposed above the piezoelectric body and a second electrode layer mainly made of Al disposed above the first electrode layer. The IDT electrode has a total thickness not more than 0.15λ. The first electrode layer has a thickness not less than 0.05λ. The second electrode layer has a thickness not less than 0.025λ.
摘要:
An elastic wave device includes a piezoelectric substrate, an IDT electrode disposed on a piezoelectric device, a first dielectric layer disposed on the piezoelectric substrate such that it covers the IDT electrode, and a second dielectric layer disposed over the first dielectric layer. The second dielectric layer propagates transverse waves faster than that on the first dielectric layer. When a film thickness of the second dielectric layer is greater than a wave length of a major wave excited by the IDT electrode, a cut angle of the piezoelectric substrate in indication of Euler angles (φ, θ, Φ) is set to φ≠0°, θ≠0°, and Φ≠0°. This suppresses deterioration of device characteristics.
摘要:
A plate wave element includes a piezoelectric body, a comb-shaped electrode disposed on an upper surface of the piezoelectric body, and a medium layer disposed on the upper surface of the piezoelectric body so as to cover the comb-shaped electrode. The comb-shaped electrode excites a Lamb wave as a main wave. The medium layer has a frequency temperature characteristic opposite to that of the piezoelectric body. The plate wave element has a preferable frequency temperature characteristic.
摘要:
An acoustic wave device includes a piezoelectric substrate having a surface adapted to allow leaky surface wave to propagate thereon, an interdigital electrode provided on a portion of the surface of the piezoelectric substrate, and a dielectric layer provided on the surface of the piezoelectric substrate to cover the interdigital electrode. The piezoelectric substrate is made of lithium niobate. The dielectric layer is made of tantalum pentoxide. The piezoelectric substrate is made of a rotated Y-cut substrate having a cut angle which is not smaller than 2.5 degrees and is not larger than 22.5 degrees. A ratio H/λ of a film thickness H of the dielectric layer to a wavelength λ of a center frequency of the leaky surface wave ranges from 0.034 to 0.126. This acoustic wave device works in a wide band width.
摘要:
An acoustic wave resonator includes a piezoelectric body, an IDT electrode for exciting an acoustic wave with wavelength λ, and a dielectric thin film provided so as to cover the IDT electrode. The IDT electrode includes a bus bar electrode region, a dummy electrode region, and an IDT cross region in order from outside. The film thickness of the dielectric thin film above at least one of the bus bar electrode region and the dummy electrode region is smaller than that above the IDT cross region by 0.1λ to 0.25λ. This configuration provides an acoustic wave resonator that reduces transverse-mode spurious emission.
摘要:
An acoustic wave device includes a piezoelectric substrate, an IDT electrode provided on the piezoelectric substrate, a dielectric layer provided so as to cover the IDT electrode, and a first stress relaxation layer provided on the dielectric layer. Furthermore, the acoustic wave device includes an extraction electrode connected to the IDT electrode and extracted onto the first stress relaxation layer, and a bump provided on the extraction electrode. An elastic modulus of the first stress relaxation layer is smaller than that of the dielectric layer.
摘要:
A boundary acoustic wave device includes a first medium layer made of piezoelectric material, a second medium layer provided on the first medium layer, a third medium layer provided on the second medium layer, and an electrode provided at an interface between the second and third medium layers. The electrode drives the third medium layer to generate a transverse wave. A propagation speed of the transverse wave in the third medium layer is lower than a propagation speed of the transverse wave in the first medium layer. A propagation speed of the transverse wave in the second medium layer is lower than the propagation speed of the transverse wave in the first medium layer. This boundary acoustic wave device has a large electro-mechanical coupling coefficient.
摘要:
An acoustic wave device has: a piezoelectric body; an interdigital electrode that is arranged on the piezoelectric body and excites an acoustic wave; and a dielectric layer that is arranged on the piezoelectric body so as to cover the interdigital electrode. The dielectric layer includes a composition changing portion made up of a medium where propagation velocity of a transverse wave continuously increases upward. With this configuration, it is possible to shift a spurious radiation by a high-order mode that propagates inside the dielectric layer to a higher frequency, so as to reduce an influence of the spurious radiation by the high-order mode.
摘要:
The elastic wave device of the present invention has an piezoelectric substrate; a first dielectric layer disposed on the piezoelectric substrate; a second dielectric layer disposed on the first dielectric layer; and an acoustical layer on the second dielectric layer. Determining each film thickness of the first and the second dielectric layers provides advantageous effects. That is, energy of an SH wave as a main wave is confined in the boundary between the piezoelectric substrate and the first dielectric layer, and at the same time, an SV wave is suppressed as an unwanted wave. The device allows the SV wave—whose displacement distribution is similar to that of Stoneley wave—to have displacement distribution on the upper surface of the second dielectric layer and to be suppressed by the acoustical layer disposed on the second dielectric layer.