Abstract:
Methods and systems are provided for flight management system (FMS) familiarization training. The system comprises a user application programming interface (API) that receives a request for a training scenario from a user. A flight management engine (FME) generates the training scenario that simulates the flight mission of an FMS onboard a designated aircraft. The training scenario is generated using the same algorithms as the FMS. A database configuration module retrieves performance and condition data that is provided to the FME for use in generating the training scenario. An external API retrieves external third-party data that is provided to the FME for use in generating the training scenario.
Abstract:
Cockpit display systems and methods for generating navigation displays including landing diversion symbology are provided. In one embodiment, the cockpit display system includes a cockpit monitor and a controller coupled to the cockpit monitor. The controller is configured to assess the current feasibility of landing at one or more diversion airports in a range of an aircraft on which the cockpit display system is deployed. The controller is further configured to assign each diversion airport to one of a plurality of predetermined landing feasibility categories, and generate a horizontal navigation display on the cockpit monitor including symbology representative of the feasibility category assigned to one or more of the diversion airports.
Abstract:
Techniques are disclosed for providing at least one proposed alternative plan of travel of a vehicle are disclosed based upon data of at least one geographic region about at least one of global navigation satellite system (GNSS) spoofing and GNSS jamming. If a current path of travel of the vehicle intersects at least one geographic region of at least one of GNSS spoofing and GNSS jamming, then determining the at least one proposed alternative plan of travel of the vehicle. At least one of the at least one proposed alternative plan of travel includes a path of travel that does not intersect at least one geographic region of the at least one geographic region of at least one of GNSS spoofing and GNSS jamming. The determined at least one proposed alternative plan of travel is sent to the vehicle.
Abstract:
Methods and systems for an aircraft entering a terminal radar approach control (TRACON) airspace to identify a number of feasible target traffic for a paired approach for the aircraft. Traffic data is filtered to identify a plurality of neighbor traffic that are entering the TRACON airspace or within the TRACON airspace when the aircraft is entering the TRACON airspace and estimating, concurrently, for each neighbor traffic of the plurality of neighbor traffic: a trajectory, a traffic arrival time at an ideal location for a respective paired approach with the aircraft, a spacing interval between the neighbor traffic and the aircraft for the respective paired approach, and a respective target location for the aircraft to begin the respective paired approach, as a function of the spacing interval. Based on the estimations, the method identifies feasible, marginally feasible, and infeasible targets, and displays this information in an intuitive lateral display.
Abstract:
Techniques are disclosed for providing at least one proposed alternative plan of travel of a vehicle are disclosed based upon data of at least one geographic region about at least one of global navigation satellite system (GNSS) spoofing and GNSS jamming. If a current path of travel of the vehicle intersects at least one geographic region of at least one of GNSS spoofing and GNSS jamming, then determining the at least one proposed alternative plan of travel of the vehicle. At least one of the at least one proposed alternative plan of travel includes a path of travel that does not intersect at least one geographic region of the at least one geographic region of at least one of GNSS spoofing and GNSS jamming. The determined at least one proposed alternative plan of travel is sent to the vehicle.
Abstract:
Techniques are provided for detecting an intrusion event in a network. At a gateway device in the network, performance parameters of the gateway device are monitored. Steady-state operations are defined based on expected performance of the device parameters. The steady-state operations are compared to the monitored device performance and other context parameters. A hybrid network intrusion detection technique is activated to determine a presence of the intrusion event for known and unknown attacks.
Abstract:
A system and methods for enhancing operator situational awareness are disclosed. For example, one method includes monitoring a plurality of radio transmissions associated with a plurality of vehicles in a first traffic flow pattern, monitoring a second traffic flow pattern in a vicinity of a vehicle of the plurality of vehicles, monitoring at least one weather value for a destination site for the plurality of vehicles, proposing a destination approach for the vehicle in response to the monitoring, evaluating an impact of the proposed destination approach on an existing travel path for the vehicle, and generating a second travel path for the vehicle in response to the evaluating.
Abstract:
Methods for providing a flight management service in a cloud computing environment, the method includes: receiving, an object request by a server from a mobile device wherein the server is located in the cloud computing environment including: at least a flight management system (FMS) connected to a stateless object; processing, by the connected FMS hosted by the server, the object request generating a resource object for a particular flight plan wherein the resource object includes a data set; storing, by the connected FMS, the data set at the stateless object in the cloud environment; and sending, by the server, an object response from the connected FMS to the mobile device, for accessing the data set of the stateless object for the particular flight plan.
Abstract:
A vehicle decision support system and method capable of processing operational constraints, a flight plan, and appropriate environmental data to generate timely and readily comprehensible guidance are provided.
Abstract:
Cockpit display systems and methods for generating navigation displays including landing diversion symbology are provided. In one embodiment, the cockpit display system includes a cockpit monitor and a controller coupled to the cockpit monitor. The controller is configured to assess the current feasibility of landing at one or more diversion airports in a range of an aircraft on which the cockpit display system is deployed. The controller is further configured to assign each diversion airport to one of a plurality of predetermined landing feasibility categories, and generate a horizontal navigation display on the cockpit monitor including symbology representative of the feasibility category assigned to one or more of the diversion airports.