Abstract:
Soft information for achieving interference cancellation in downlink transmissions can be communicated over device-to-device (D2D) links, thereby allowing paired user equipments (UEs) to receive downlink transmissions over the same radio resources. More specifically, paired UEs that receive transmissions over the same time-frequency resources may exchange soft or hard information over D2D links in order to facilitate interference cancellation. The D2D links may be unidirectional or bidirectional, and may be established over in-band or out-of-band resources. Paired UEs may be in the same or different cells, and may receive their respective transmissions from the same or different transmit point. UEs may be paired with one another based on various criteria, e.g., interference cancellation capabilities, scheduling metrics, etc.
Abstract:
An embodiment method of resource allocation for sparse code multiple access (SCMA) transmissions includes partitioning a resource block into a plurality of resource regions. The method also includes assigning the plurality of resource regions to respective device groups. The resource region assignments are then signaled to devices of the respective device groups. The method also includes receiving SCMA signals from the devices of the respective device groups. The SCMA signals from one group of the respective device groups are asynchronous with respect to the SCMA signals from another group of the respective device groups.
Abstract:
A method for operating an adapting device includes selecting a first access mode out of a plurality of access modes for a first transmission between a first communications device and a second communications device, wherein the selection of the first access mode is made in accordance with an access mode criterion, and at least one of communications system information, and user equipment information, and determining sparse code multiple access (SCMA) parameters from the first access mode in accordance with a SCMA parameter mapping rule. The method also includes providing information about the first access mode to at least one of the first communications device and the second communications device.
Abstract:
A method for operating a transmitting device using semi-orthogonal multiple access (SOMA) includes determining power allocations and sub-quadrature amplitude modulation (sub-QAM) allocations for a first receiving device and a second receiving device in accordance with channel information associated with the first receiving device and the second receiving device, and transmitting information about a first power allocation for the first receiving device, and a first sub-QAM allocation for the first receiving device to the first receiving device.
Abstract:
System and method embodiments are provided for non-cellular wireless access. In an embodiment, a method for non-cell grid based radio access in a radio access network includes determining, by a controller, a group of transmit points (TPs) to assign to a logical entity; assigning, by the controller, a logical entity identifier (ID) to the logical entity, wherein the logical entity ID identifies the logical entity through which a user equipment (UE) communicates with the radio access network; and causing, by the controller, at least one of the TPs in the logical entity to send signals to the UE.
Abstract:
System and method embodiments are provided for enabling flexible and reliable UE-to-UE based relay. The embodiments include using fountain codes for combining signals at a suitable network layer higher than a media access control (MAC) sub-layer and using a MAC sub-layer hybrid automatic repeat request (HARQ) transmission scheme. When a relay UE in a UE group for joint reception receives, from a network access point, a data packet intended for a destination UE in the UE group and including fountain code at the higher network layer, the relay UE sends the data packet to the destination UE and returns a HARQ ACK message at the MAC sub-layer to the access point. The destination UE then receives and decodes the data packet. Subsequently, upon receiving the entire data, the destination UE sends an ACK message at the higher network layer to the access point.
Abstract:
An apparatus for adapting hyper cells in response to changing conditions of a cellular network is disclosed. During operation, the apparatus collects data regarding network conditions of the cellular network. In accordance with the collected network condition data, the apparatus changes an association of a transmit point from a second cell ID of a second hyper cell to a first cell ID of a first hyper cell. Virtual data channels, broadcast common control channel and virtual dedicated control channel, transmit point optimization, UE-centric channel sounding and measurement, and single frequency network synchronization are also disclosed.
Abstract:
In accordance with an embodiment, a method of operating a base station configured to communicate with at least one user device includes transmitting a reference signal to the at least one user device, receiving channel quality information from the at least one user device, and forming a beam based on the channel quality information received from the at least one user device.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
Abstract:
In accordance with an embodiment, a method of operating a base station configured to communicate with at least one user device includes transmitting a reference signal to the at least one user device, receiving channel quality information from the at least one user device, and forming a beam based on the channel quality information received from the at least one user device.