Abstract:
The invention relates to a process for the liquid-phase separation of xylose from a mixture of C5 and C6 sugars comprising at least xylose and glucose, by adsorption of xylose on a zeolitic adsorbent based on FAU-type zeolite crystals having an Si/Al atomic ratio of less than or equal to 1.5 comprising barium, wherein (a) said mixture is brought into contact with said adsorbent, by liquid chromatography, to obtain a glucose-enriched liquid phase and a xylose-enriched adsorbed phase; and (b) on the one hand, said glucose-enriched liquid phase is recovered and said phase adsorbed on said adsorbent is desorbed by means of a desorption solvent in order to recover the xylose on the other hand.
Abstract:
The present invention relates to zeolite adsorbents based on agglomerated crystals of zeolite X comprising barium, potassium, sodium and strontium. These adsorbents have applications in the separation of fractions of aromatic C8 isomers and in particular xylenes.
Abstract:
The present invention relates to zeolite adsorbents based on agglomerated crystals of zeolite X comprising barium, potassium, sodium and strontium. These adsorbents have applications in the separation of fractions of aromatic C8 isomers and in particular xylenes.
Abstract:
The present invention relates to a zeolitic granular material having a connected zeolitic structure across the entire volume thereof, having high mechanical resistance to crushing in the bed, and optimised material transfer in the macro-mesopores. The invention also relates to the method for preparing said zeolitic granular material, as well as to the use thereof as an adsorbent material in co-current or counter-current liquid phase separation methods, typically in a simulated mobile bed.
Abstract:
Provided is a zeolite-based adsorbent in the form of agglomerates, where the adsorbent having a tortuosity factor, calculated from the pore distribution determined by mercury intrusion porosimetry, of greater than 1 and less than 3. The adsorbent also has a porosity as determined by mercury intrusion porosimetry of between 25% and 35%. The adsorbent is useful in the field of separations in particular in a process for separating para-xylene from aromatic hydrocarbon isomer fractions containing 8 carbon atoms.
Abstract:
A method for measuring the concentrations of species present at at least one point of a separation unit operating in simulated moving bed (SMB) mode, or a hybrid separation unit employing a step for simulated moving bed (SMB) separation and a step for crystallization, by calibration by inline acquisition of Raman spectra for different mixtures; analysis by inline signal processing of the Raman spectrum.
Abstract:
The present invention relates to zeolitic adsorbents based on agglomerated crystals of FAU zeolite containing barium and/or potassium, with large external surface area, combining optimum properties in terms of selectivity and mechanical strength. These adsorbents find applications in the separation of cuts of C8-aromatic isomers and notably of xylenes, in the separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, in the separation of cresols, and in the separation of polyhydric alcohols such as sugars.
Abstract:
The present invention relates to zeolitic adsorbents based on agglomerated crystals of FAU zeolite comprising barium and/or potassium, with large external surface area, combining optimum properties in terms of selectivity and mechanical strength.These adsorbents find applications in the separation of cuts of C8-aromatic isomers and notably of xylenes, in the separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluenediamine, in the separation of cresols, and polyhydric alcohols, such as sugars.
Abstract:
The present invention describes a process for the separation of xylenes in simulated counter-current utilising at least one adsorber with a limited cumulated total height (Hcu) of adsorbent and a superficial velocity (Vsl) of less than 2 cm/s.