Abstract:
A virtual image display apparatus configured to be in front of at least one eye of a user includes an image display unit, a first beam splitting unit, and a reflection-refraction unit. The image display unit provides an image beam. The first beam splitting unit disposed on transmission paths of the image beam and an object beam causes at least one portion of the object beam to propagate to the eye and causes at least one portion of the image beam to propagate to the reflection-refraction unit. The reflection-refraction unit includes a lens portion and a reflecting portion on a first curved surface of the lens portion. At least part of the image beam travels through the lens portion, is reflected by the reflecting portion, travels trough the lens portion again, and is propagated to the eye by the first beam splitting unit in sequence.
Abstract:
A detecting device includes at least one detecting module. In the detecting module, a light source unit is configured to emit a first beam and a second beam. The wavelength of the first beam is different from that of the second beam. A packaging unit is disposed on the light source unit and a light detecting unit and on transmission paths of the first beam and the second beam from the light source unit. An optical microstructure unit is disposed on the transmission paths of the first beam and the second beam. The first beam and the second beam emitted from the light source unit pass through the packaging unit to pass the optical microstructure unit to be transmitted to a biological tissue, and then pass through the optical microstructure unit to pass the packaging unit to be transmitted to the light detecting unit in sequence.
Abstract:
An optically-induced dielectrophoresis device includes a first substrate, a first conductive layer, a first patterned photoconductor layer, a first patterned layer, a second substrate, a second conductive layer, and a spacer. The first conductive layer is disposed on the first substrate. The first patterned photoconductor layer is disposed on the first conductive layer. The first patterned layer is disposed on the first conductive layer. The first patterned photoconductor layer and the first patterned layer are distributed alternately over the first conductive layer. Resistivity of the first patterned photoconductor layer is not equal to resistivity of the first patterned layer. At least one of the first substrate and the second substrate is pervious to a light. The second conductive layer is disposed on the second substrate and between the first substrate and the second substrate. The spacer connects the first substrate and the second substrate.
Abstract:
A light source device including at least one light source, an optical module, a diffractive optical element, and a shielding component is provided. The at least one light source emits at least one light beam, and the light beam has a wavelength range. The optical module is disposed on a transmission path of the light beam to provide a plurality of optical surfaces. The optical surfaces respectively have a plurality of different inclination angles, so as to transmit at least a portion of the light beam having at least a predefined wavelength to a plurality of different directions. The diffractive optical element is disposed on the transmission path of the light beam, so as to diffract the light beam. The shielding component has an outlet. A portion of the diffracted light beam passes through the outlet to the outside.
Abstract:
An ultrasound imaging system and methods thereof are provided. A method includes transmitting a plurality of energy signals coded by a first asymmetric phase element toward an object to be imaged, receiving a plurality of echo signals from the object to be imaged, respectively coding the received signals with a second asymmetric phase element, and reconstructing an image data set with an extended depth of field by decoding the received signals. The ultrasound imaging system includes a transmitter transmitting energy signals coded by a first asymmetric phase element toward an object to be imaged, and a receiver receiving echo signals from the object to be imaged, respectively coding the received signals with a second asymmetric phase element, and reconstructing an image data set with an extended depth of field by decoding the received signals.
Abstract:
An optical equipment for inspecting and addressing a specimen is disclosed. The optical equipment comprises an optical device and a processing module. The optical device comprises a light source, a sample inspecting device and an address detecting device. The sample inspecting device comprises a first objective lens and a first detector. A beam is focused on a sample placed in an inspected site of a specimen by the first objective lens. The address detecting device comprises a second objective lens and a second detector. A beam is focused on the address coding site by the second objective lens. The processing module controls the beam to be focused on the sampling points of the inspected site to generate first optical signals, and simultaneously controls the beam of the light source to be focused on the corresponding address codes of the address coding site to generate second optical signals.
Abstract:
An optical equipment for inspecting and addressing a specimen is disclosed. The optical equipment comprises an optical device and a processing module. The optical device comprises a light source, a sample inspecting device and an address detecting device. The sample inspecting device comprises a first objective lens and a first detector. A beam is focused on a sample placed in an inspected site of a specimen by the first objective lens. The address detecting device comprises a second objective lens and a second detector. A beam is focused on the address coding site by the second objective lens. The processing module controls the beam to be focused on the sampling points of the inspected site to generate first optical signals, and simultaneously controls the beam of the light source to be focused on the corresponding address codes of the address coding site to generate second optical signals.