摘要:
Methods are provided that include a method comprising providing a treatment fluid comprising a base fluid and a gelling agent that comprises a clarified diutan; and introducing the treatment fluid into at least a portion of a subterranean formation. In some embodiments, the treatment fluid may be placed into at least a portion of a subterranean formation at a pressure sufficient to create or enhance at least one fracture in the subterranean formation. In some embodiments, the treatment fluid may be introduced into a pipeline. Additional methods are also provided.
摘要:
Methods are provided that include a method comprising providing a treatment fluid comprising a base fluid and a gelling agent that comprises a diutan composition; providing a breaker that comprises an acid composition; allowing the breaker to interact with the treatment fluid; and allowing the viscosity of the treatment fluid to decrease. In some embodiments, the treatment fluid may comprise a base fluid, a gelling agent that comprises a diutan composition, and a breaker that comprises an acid composition. In some embodiments, the treatment fluid may be introduced into a portion of the subterranean formation at or above a pressure sufficient to create or enhance one or more fractures in the portion of the subterranean formation. Additional methods are also provided.
摘要:
The present invention relates to methods and compositions for treating subterranean formations. More particularly, the present invention relates to polymersomes, viscosifying agents that comprise polymersomes, and associated methods of use. In some embodiments, the present invention discloses methods of treating a section of a subterranean formation that comprises the steps of providing a viscosified treatment fluid that comprises an aqueous-based component, and a viscosifying agent that comprises a polymersome; and treating the section of the subterranean formation. In other embodiments, the present invention discloses methods of viscosifying a treatment fluid, suspending particulates in a treatment fluid, fracturing a subterranean formation, providing sand control in a section of a subterranean formation, and encapsulating treatment fluid additives. In yet other embodiments, the present invention discloses viscosified treatment fluids, fracturing fluids, gravel pack fluids, polymersomes, and encapsulated treatment fluid additives.
摘要:
The present invention provides a process and an additive package for removing oil from solid material recovered from a well bore, e.g., drill cuttings and produced sand. In this process, the solid material is passed from the well bore to a separation zone. An aqueous acidic solution containing a polymer substituted with an amino group is introduced to the separation zone containing the solid material along with a halogenating agent and optionally one or more surfactants. The polymer, halogenating agent, and optional surfactant constitute the additive package. The polymer substituted with an amino group is preferably chitosan, and the halogenating agent is preferably a sodium hypochlorite solution. The mixture formed in the separation zone is agitated to cause a product of a reaction between the polymer and the halogenating agent to contact the solid material and remove residual oil therefrom.
摘要:
A method including the steps of: (a) providing a dispersion comprising: a water-soluble polysaccharide and a carrier fluid, wherein the carrier fluid comprises: (i) glycerol, and (ii) a mono-hydroxylic alcohol having 1-3 carbons, wherein the mono-hydroxylic alcohol is present in at least 0.1% by weight of the glycerol, wherein the polysaccharide is insoluble in the carrier fluid; (b) mixing the dispersion with at least water to form an aqueous well treatment fluid, wherein the polysaccharide is soluble in the aqueous phase of the aqueous wellbore treatment fluid; and (c) introducing the aqueous treatment fluid into a subterranean formation.
摘要:
Composite particulates for use in high permeability subterranean formations may contain, at least, a gel particulate having a solid particulate incorporated. Some methods of using the diverting agent may include introducing a treatment fluid comprising a base fluid and a diverting agent into at least a portion of a subterranean formation and allowing the diverting agent to bridge fractures, provide fluid loss control, seal the rock surfaces for fluid diversion, or plug an area along the annulus of a wellbore.
摘要:
The invention provides a method for treating a subterranean formation penetrated by a wellbore, the method comprising the steps of formulating a treatment fluid and introducing the treatment fluid through the wellbore. The treatment fluid comprises water; diutan; and a sufficient amount of salt to increase the density of the treatment fluid to at least 8.5 lb/gal, wherein at least 50% by weight of the salt is selected from the group consisting of: bromide salts, non-bromide salts having a higher salting-in effect than bromide according to the Hofmeister series as measured by the salt's effect on the cloud point of poly(ethylene oxide) that has a molecular weight of 4×106, and any combination in any proportion thereof. The invention also provides a treatment fluid for use in a subterranean formation penetrated by a wellbore, the treatment fluid comprising: water; diutan; and a sufficient amount of salt to increase the density of the treatment fluid to at least 8.5 lb/gal, wherein at least 50% by weight of the salt is selected from the group consisting of: bromide salts, non-bromide salts having a higher salting-in effect than bromide according to the Hofmeister series as measured by the salt's effect on the cloud point of poly(ethylene oxide) that has a molecular weight of 4.106, and any combination in any proportion thereof.
摘要翻译:本发明提供了一种处理井眼穿透的地层的方法,所述方法包括配制处理流体并通过井筒引入处理流体的步骤。 处理液包含水; di an 和足够量的盐以将处理流体的密度增加至至少8.5lb / gal,其中至少50重量%的盐选自:溴化物盐,具有较高浓度的溴化物盐,非溴化物盐 通过盐对分子量为4×10 6的聚(环氧乙烷)的浊点的影响测定的Hofmeister系列的盐析效果以及任何比例的任何组合。 本发明还提供一种用于在井眼穿透的地层中的处理流体,所述处理流体包括:水; di an 和足够量的盐以将处理流体的密度增加至至少8.5lb / gal,其中至少50重量%的盐选自:溴化物盐,具有较高浓度的溴化物盐,非溴化物盐 通过盐对分子量为4.106的聚(环氧乙烷)的浊点的影响测定的根据Hofmeister系列的溴化物的盐析效果以及任何比例的任何组合。
摘要:
Improved methods of oil and/or gas production by reducing the occurrence of water blocks and/or gas condensates in the treated portion of the formation are provided. In one embodiment, the methods comprise: providing a treatment fluid comprising: an aqueous base fluid, a friction reducing agent, and a quaternary ammonium surfactant described by at least the following formula: wherein R1 is either a saturated or unsaturated, branched or straight chain alkyl comprising about 12 carbons to about 22 carbons, and R2, R3 and R4 are independently selected from the group consisting of either a saturated or unsaturated, branched or straight chain alkyl or aryl comprising about 1 to about 14 carbons, and any combination thereof; and introducing the treatment fluid into at least a portion of a subterranean formation at a rate and pressure sufficient to create or enhance at least one or more fractures in the subterranean formation.
摘要:
Improved treatment fluids and methods for use in subterranean operations including the treatment of low permeability shale formations. In one embodiment the methods comprise: providing a treatment fluid comprising an aqueous base fluid and a controlled wetting system that comprises: a water soluble polymer having a charge, a surfactant having an opposite charge, and a compatibilizer; and introducing the treatment fluid into a subterranean formation.
摘要:
Methods are provided for treating a portion of a well and include the steps of: (a) forming a treatment fluid comprising an aqueous solution, wherein the aqueous solution comprises: (i) water; (ii) a water-soluble polysaccharide; (iii) one or more water-soluble salts, wherein the one or more salts are selected and are in at least a sufficient concentration such that the water-salt solution has a density of at least 10 ppg; and (iv) urea; and (b) introducing the treatment fluid into the portion of the well. According to the inventions, the concentration of the urea in the water is in at least a sufficient concentration such that aqueous solution: (1) has a G′ of at least 2 Pa, or (2) is filterable. According to the inventions, an identical aqueous solution except with less than the sufficient concentration of the urea would not satisfy the above conditions.