Abstract:
Device to device (D2D) communication can be performed with packet data convergence protocol (PDCP) based encapsulation without internet protocol (IP) addressing using a PC5 protocol (such as PC5 Signaling Protocol). The non-IP D2D PDCP-encapsulated communication can further include two forms of secure data transfer. A first non-IP D2D PDCP-encapsulated communication can be a negotiated non-IP D2D PDCP-encapsulated communication. A second non-IP D2D PDCP-encapsulated communication can be a non-negotiated non-IP D2D communication. The non-negotiated non-IP D2D PDCP-encapsulated communication can include a common key management server (KMS) version and a distributed KMS version.
Abstract:
This disclosure describes methods, apparatus, and systems related to secure device provisioning system. A first computing device comprising one or more processors and one or more transceiver components may determine data received in a data scan from a second computing device. The first computing device may determine a base Uniform Resource Locator (URL) based on the data. The first computing device may determine a domain-specific suffix based at least in part on a communication domain. The first computing device may append the base URL with a domain-specific suffix. The first computing device may identify domain-specific information from a provisioning server based at least in part on the domain-specific suffix. The first computing device may send a registration request to the provisioning server based at least in part on the domain-specific information. The first computing device may identify a registration notification received from the provisioning server.
Abstract:
This disclosure describes systems, methods, and apparatus related to receiving, at an access point and from a wireless communication station, a media access control (MAC) address of the wireless communication station; assigning, at the access point, a prefix to the MAC address of the wireless communication station; receiving, at the access point and from the wireless communication station, a frame comprising the prefix and a random MAC address; replacing, at the access point and using the prefix, the random MAC address in the frame with the MAC address of the wireless communication station, thereby resulting in a processed frame; and transmitting, at the access point and to a destination device, the processed frame.
Abstract:
Systems and methods are provided for security systems and procedures. Certain embodiments herein are directed to privacy protection for a permanent subscriber identifier. Other embodiments are directed to support of extensible authentication protocol (EAP) authentication and authorization by 5G non-access stratum (NAS).
Abstract:
This document discusses, among other things, a Cellular Internet-of-Things (CIoT) network architecture to enable communication between an apparatus of a CIoT User Equipment (UE) and a network through a CIoT enhanced Node B (eNB) according to a lightweight Non-Access Stratum (NAS) protocol. An apparatus of a CIoT eNB can process data for communication between the CIoT UE and the network. The lightweight NAS protocol supports a reduced set of NAS messages for communication between, for example, the CIoT UE and the CIoT eNB, such as using a modified NAS message, or one or more new messages.
Abstract:
Disclosed herein are user equipment (UE) configured to communicate with a vehicle-to-everything (V2X) control function (CF) and a V2X Key Management Function (KMF). The UE includes processing circuitry configured to select a broadcast service from a plurality of available broadcast services and encode a key request message for transmission to the V2X KMF. The key request message includes a service identification (ID) of the selected broadcast service and identification of V2X security techniques supported by the UE. A key response message received from the V2X KMF in response to the key request message is decoded. The key response message identifies a V2X security technique of the V2X security techniques. The identified V2X security technique is execute to obtain security credentials provisioned by the V2X KMF. Data is encoded for transmission to a second UE during the selected broadcast service, where the encoding is based on the provisioned security credentials.
Abstract:
This document discusses, among other things, a Cellular Internet-of-Things (CIoT) network architecture to enable communication between an apparatus of a CIoT User Equipment (UE) and a network through a CIoT enhanced Node B (eNB) according to a lightweight Non-Access Stratum (NAS) protocol. An apparatus of a CIoT eNB can process data for communication between the CIoT UE and the network. The lightweight NAS protocol supports a reduced set of NAS messages for communication between, for example, the CIoT UE and the CIoT eNB, such as using a modified NAS message, or one or more new messages.
Abstract:
Apparatuses, methods, and computer readable media for secure discovery and connection to internet of things devices in a wireless local-area network are disclosed. An apparatus of a station comprising processing circuitry is disclosed. The processing circuitry may be configured to: encode a first packet to indicate to an access point to start discovery of Internet of Things (IoT) devices, and decode a second packet from the access point. The second packet may include identifications of IoT devices unauthenticated with the access point. The processing circuitry may be configured to receive a selection from an application of the station of one of the one or more identifications of the IoT devices, and encode a third packet including the identification of the IoT device and an indication that the access point is to request establishment of a secure session with the IoT device.
Abstract:
This disclosure describes systems, methods, and apparatus related to receiving, at an access point and from a wireless communication station, a media access control (MAC) address of the wireless communication station; assigning, at the access point, a prefix to the MAC address of the wireless communication station; receiving, at the access point and from the wireless communication station, a frame comprising the prefix and a random MAC address; replacing, at the access point and using the prefix, the random MAC address in the frame with the MAC address of the wireless communication station, thereby resulting in a processed frame; and transmitting, at the access point and to a destination device, the processed frame.
Abstract:
Device to device (D2D) communication can be performed with packet data convergence protocol (PDCP) based encapsulation without internet protocol (IP) addressing. The non-IP D2D PDCP-encapsulated communication can further include two forms of secure data transfer. A first non-IP D2D PDCP-encapsulated communication can be a negotiated non-IP D2D PDCP-encapsulated communication. A second non-IP D2D PDCP-encapsulated communication can be a non-negotiated non-IP D2D communication. The non-negotiated non-IP D2D PDCP-encapsulated communication can include a common key management server (KMS) version and a distributed KMS version. The encapsulated communication can be used with various protocols, including a PC5 protocol (such as the PC5 Signaling Protocol) and wireless access in vehicular environments (WAVE) protocols.