Abstract:
In a method for producing a grain-oriented electrical steel sheet by including a series of steps of hot rolling a raw steel material containing C: 0.002-0.10 mass %, Si: 2.0-8.0 mass % and Mn: 0.005-1.0 mass % to obtain a hot rolled sheet, subjecting the hot rolled steel sheet after or without hot band annealing to one stage cold rolling or two or more stage cold rollings including an intermediate annealing therebetween to obtain a cold rolled sheet having a final sheet thickness, subjecting the cold rolled sheet to decarburization annealing combined with primary recrystallization annealing, applying an annealing separator to the steel sheet surface, and then subjecting to a final annealing.
Abstract:
There is provided a grain-oriented electrical steel sheet stably having excellent magnetic characteristics and coating adhesion even when a rapid heating is conducted in a primary recrystallization annealing (decarburization annealing). Concretely, it is a grain-oriented electrical steel sheet provided on its sheet surface with a tension-applying type insulation coating constituted with a coating layer A formed on a steel sheet side and mainly composed of an oxide and a coating layer B formed on a surface side and mainly composed of glass, characterized in that a ratio R (σB/σA) of a tension σB of the coating layer B on the surface side applied to the steel sheet to a tension σA of the coating layer on the steel sheet side A applied to the steel sheet is within a range of 1.20-4.0.
Abstract:
Proposed is a way to improve film adhesion when magnetic domain refining treatment is performed. The Mn+Fe concentration in the ceramic base film of a grain-oriented electrical steel sheet is 0.05 mass % or more, and the Young's modulus of the base film is 108 GPa to 144 GPa.
Abstract:
In determining the conditions for final annealing, information on the concentration of enriched components over the entire length and width of the steel sheet after decarburization annealing is obtained, the optimum function of product properties in the relationship between enriched components and control conditions for final annealing is obtained in advance, and the distribution of the control conditions for final annealing within the coil were considered while determining the control conditions for final annealing such that the area where the deviation of the product properties from the above optimum function is within a range of ±δ is maximized over the entire length and width.
Abstract:
Provided is a method for stably producing a grain-oriented electrical steel sheet with excellent magnetic properties by effectively purifying inhibitors. The method for producing a grain-oriented electrical steel sheet includes using a steel slab containing a predetermined amount of at least one of Ti, Zr, Hf, V, Nb, and Ta, and applying an annealing separator, in which 1 part by mass to 10 parts by mass of a metal compound is added with respect to 100 parts by mass of MgO, on the steel sheet surface with a ratio of particles with a particle size of 1 μm or more in the metal compound being 0.0010 particles/μm2 or less.
Abstract:
Provided is a grain-oriented electrical steel sheet having a film that is effective for the magnetic properties of the steel sheet and particularly effective for iron loss reduction and has favorable adhesion. In a grain-oriented electrical steel sheet, an insulating film partially enters into a steel substrate to form an anchor part, a depth of the anchor part from the surface of the steel substrate is 3.5 μm or less, and a number of neck parts of 5 μm2 or less in area is 0.06/μm2 or less and a number of neck parts of 10 μm2 to 40 μm2 in area is 0.005/μm2 or more and 0.011/μm2 or less, where each neck part is a remaining part of the insulating film on the surface of the steel substrate when peeling the insulating film from the steel substrate in a bend test for the grain-oriented electrical steel sheet.
Abstract:
An insulating coating treatment liquid for forming a chromium-free insulating coating on a surface of a grain-oriented electrical steel sheet, the insulating coating treatment liquid including at least one phosphate salt selected from phosphate salts of any of Mg, Ca, Ba, Sr, Zn, Al, and Mn and including colloidal silica and particles of a metal-element-containing compound. A content of the colloidal silica in terms of SiO2, on a solids basis, is 50 to 120 parts by mass, and a content of the particles of a metal-element-containing compound in terms of elemental metal is 5 to 60 parts by mass, per 100 parts by mass of the at least one phosphate salt, and the insulating coating treatment liquid has a thixotropic index (TI) of 1.00 or greater and 10.00 or less.
Abstract:
A method for producing a grain-oriented electrical steel sheet by subjecting a slab of an inhibitor-less ingredient system containing C: 0.002-0.10 mass %, Si: 2.5-6.0 mass %, Mn: 0.010-0.8 mass % and extremely decreased Al, N, Se and S to hot rolling, hot band annealing, cold rolling, decarburization annealing, application of an annealing separator and finish annealing, when a certain temperature within range of 700-800° C. in a heating process of decarburization annealing is T1 and a certain temperature as a soaking temperature within a range of 820-900° C. is T2, a heating rate R1 between 500° C. and T1 is set to not less than 100° C./s and heating rate R2 between T1 and T2 is set to not more than 15° C./s, whereby grain-oriented electrical steel sheet having excellent iron loss property and coating peeling resistance is obtained in the inhibitor-less ingredient system while ensuring decarburization property even when rapid heating is performed during decarburization annealing.
Abstract:
Provided is a treatment solution for chromium-free tension coating that can simultaneously achieve excellent moisture absorption resistance and a high iron loss reduction effect obtained by imparting sufficient tension, by using an inexpensive Ti source instead of expensive Ti chelate. The treatment solution for chromium-free tension coating contains: one or more of phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn; colloidal silica in an amount of 50 parts by mass to 120 parts by mass per 100 parts by mass of the phosphate in terms of solid content of Ti source in an amount of 30 parts by mass to 50 parts by mass per 100 parts by mass of the phosphate in terms of solid content of TiO2; and H3PO4, and the number of moles of metallic elements in the phosphate and of phosphorus in the treatment solution satisfy: 0.20≦[Mg]+[Ca+[Ba]+Sr]+[Zn]+[Mn]+1.5[Al])/[P]≦0.45 (1).