GRAIN-ORIENTED ELECTRICAL STEEL SHEET

    公开(公告)号:US20250075300A1

    公开(公告)日:2025-03-06

    申请号:US18726019

    申请日:2022-12-21

    Abstract: The present disclosure proposes a grain-oriented electrical steel sheet that reduces iron loss by controlling the magnetic domain structure and can maintain the iron loss reduction effect even after subjection to stress relief annealing. The grain-oriented electrical steel sheet comprising a predetermined chemical composition and a local area having a misorientation angle of 1.5 degrees or more from surrounding crystals and extending linearly in a direction crossing a rolling direction on at least one of front and back surfaces of the steel sheet, wherein the local area has a volume fraction of 0.1% or more and 2.0% or less and a residual stress of 100 MPa or less, and the surface having the local area has an average amount of roughness on a steel substrate being less than 5 μm.

    METHOD OF MANUFACTURING GRAIN-ORIENTED ELECTRICAL STEEL SHEET

    公开(公告)号:US20240368717A1

    公开(公告)日:2024-11-07

    申请号:US18561053

    申请日:2022-05-27

    Abstract: The present disclosure is to reduce the number of surface defects in a grain-oriented electrical steel sheet. When manufacturing a grain-oriented electrical steel sheet, a steel slab is heated before being subjected to hot rolling. The heating includes a first heating process of heating the steel slab to a temperature of lower than 1300° C., and a second heating process of heating the steel slab to a temperature of 1300° C. or higher, where the time from the end of the first heating process to the start of the second heating process is 20 seconds or longer, the oxygen concentration in the atmosphere in the second heating process is 1.0 vol % or less, and the surface of the steel slab is subjected to water cooling at a cooling rate of 3.0° C./s or higher after the second heating process and before the hot rolling.

    GRAIN-ORIENTED ELECTRICAL STEEL SHEET AND IRON CORE USING SAME

    公开(公告)号:US20220098697A1

    公开(公告)日:2022-03-31

    申请号:US17426729

    申请日:2020-01-30

    Abstract: Provided are a grain-oriented electrical steel sheet having excellent iron loss property without using magnetic domain refining treatment and an iron core produced using the same. The steel sheet comprises: a predetermined chemical composition; and a steel microstructure in which: crystal grains are made up of coarse secondary recrystallized grains of 5.0 mm or more, fine grains of more than 2.0 mm and less than 5.0 mm contained at a frequency of 0.2 to 5 grains per cm2, and very fine grains of 2.0 mm or less; for each coarse secondary recrystallized grain extending through the sheet in a thickness direction, an area ratio of a region in which projected surfaces of exposed areas of the coarse secondary recrystallized grain on a front side and a back side of the sheet coincide with each other to each of the exposed areas is 95% or more.

    METHOD OF PRODUCING GRAIN-ORIENTED ELECTRICAL STEEL SHEET

    公开(公告)号:US20190112685A1

    公开(公告)日:2019-04-18

    申请号:US15774370

    申请日:2016-11-30

    Abstract: A grain-oriented electrical steel sheet has magnetic properties improved over conventional grain-oriented electrical steel sheets. A method of producing a grain-oriented electrical steel sheet comprises: heating a steel slab at 1300° C. or less, the steel slab having a chemical composition containing C, Si, Mn, acid-soluble Al, S and/or Se, Sn and/or Sb, N, and a balance being Fe and inevitable impurities; subjecting the steel slab to hot rolling to obtain a hot rolled steel sheet; subjecting the hot rolled steel sheet to cold rolling once, or twice or more with intermediate annealing performed therebetween, to obtain a cold rolled steel sheet with a final sheet thickness; subjecting the cold rolled steel sheet to primary recrystallization annealing; applying an annealing separator to a surface of the cold rolled steel sheet after the primary recrystallization annealing; and then subjecting the cold rolled steel sheet to secondary recrystallization annealing.

Patent Agency Ranking