Time-to-live (TTL) handing for segment routing ping/traceroute

    公开(公告)号:US11522794B2

    公开(公告)日:2022-12-06

    申请号:US17127759

    申请日:2020-12-18

    Abstract: An improved traceroute mechanism for use in a label-switched path (LSP) is provided by (a) receiving, by a device in the LSP, an echo request message, wherein the echo request includes a label stack having a least one label, and wherein each of the at least one label has an associated time-to-live (TTL) value; (b) responsive to receiving the echo request, determining by the device, whether or not the device is a penultimate hop popping (PHP) device for the outermost label of the label stack; and (c) responsive to determining that the device is the PHP device for the outermost label of the label stack, (1) generating an echo reply message corresponding to the echo request message, wherein the echo reply message is encoded to indicate that the device is the PHP device for the outermost label of the label stack, and (2) sending the echo reply message back towards a source of the echo request message. Responsive to receiving the echo reply message by the ingress of the LSP defined by the outermost label of the label stack, the ingress may (a) determine whether or not the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, and (b) responsive to a determination that the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, (1) generate a next echo request in which the TTL value associated with the outermost label in the label stack is increased and in which the TTL value associated with a next to outermost label, if any, in the label stack is incremented, and (2) send the next echo request message on the LSP defined by the outermost label of the label stack.

    Segmented traceroute for segment routing traffic engineering

    公开(公告)号:US11303549B2

    公开(公告)日:2022-04-12

    申请号:US16946961

    申请日:2020-07-13

    Abstract: Techniques are described for selectively pinging certain devices along a segment routing label switched path (LSP) to detect failures in the segment routing LSP. For example, an ingress device comprises one or more processors operably coupled to a memory that are configured to: in response to a request to verify connectivity of a segment routing LSP, configure a FEC stack specifying a stack of segment routing labels for the segment routing LSP; for each of the one or more devices identified from the FEC stack: generate a respective MPLS connectivity request packet for a respective device identified from an outermost FEC of the FEC stack; send the MPLS connectivity request packet to the respective device; receive an MPLS connectivity response packet that verifies connectivity of the respective device; and in response, update the FEC stack by removing the outermost FEC of the FEC stack that identifies the respective device.

    SEGMENTED TRACEROUTE FOR SEGMENT ROUTING TRAFFIC ENGINEERING

    公开(公告)号:US20210367867A1

    公开(公告)日:2021-11-25

    申请号:US16946961

    申请日:2020-07-13

    Abstract: Techniques are described for selectively pinging certain devices along a segment routing label switched path (LSP) to detect failures in the segment routing LSP. For example, an ingress device comprises one or more processors operably coupled to a memory that are configured to: in response to a request to verify connectivity of a segment routing LSP, configure a FEC stack specifying a stack of segment routing labels for the segment routing LSP; for each of the one or more devices identified from the FEC stack: generate a respective MPLS connectivity request packet for a respective device identified from an outermost FEC of the FEC stack; send the MPLS connectivity request packet to the respective device; receive an MPLS connectivity response packet that verifies connectivity of the respective device; and in response, update the FEC stack by removing the outermost FEC of the FEC stack that identifies the respective device.

    PATH MONITORING SYSTEM (PMS) CONTROLLER OR INGRESS NODE BASED MULTIPROTOCAL LABEL SWITCHING (MPLS) PING AND TRACEROUTE IN INTER-AUTONOMOUS SYSTEM (AS) SEGMENT ROUTING (SR) NETWORKS

    公开(公告)号:US20200351188A1

    公开(公告)日:2020-11-05

    申请号:US16403540

    申请日:2019-05-04

    Abstract: Echo or traceroute functionality is supported in a path spanning multiple autonomous systems (ASes) having segment routing (SR) enabled, the path including an ingress node and an egress node, by: (a) obtaining a return label stack to reach the ingress node from either (A) the egress node, or (B) a transit node in the path; (b) obtaining a label stack to reach, from the ingress node, either (A) the egress node, or (B) the transit node; (c) generating a request message including the return label stack; and (d) sending the request message towards either (A) the egress node, or (B) the transit node using the label stack. The example method may further include: (e) receiving, by either (A) the egress node, or (B) the transit node, the request message, wherein the request message includes information for performing a validity check; (f) performing a validity check using the information included in the request message to generate validity information; (g) generating a reply message including the validity information and information from the return label stack; and (h) sending the reply message towards the ingress node using information from the return label stack included in the request message.

    Coordinating pseudowire connection characteristics and multi-homed provider edge device capabilities

    公开(公告)号:US10771383B2

    公开(公告)日:2020-09-08

    申请号:US16018943

    申请日:2018-06-26

    Abstract: A device may store first information regarding a first pseudowire connection with a first device, wherein the first pseudowire connection provides access to an Ethernet virtual private network (EVPN) to communicate with a host device. The device may store second information regarding a second pseudowire connection with a second device, wherein the second pseudowire connection provides access to the EVPN to communicate with the host device. The device may receive a message that includes a configuration identifier and identify the configuration identifier. The device may change a first characteristic of the first pseudowire connection based on the configuration identifier. The device may change a second characteristic of the second pseudowire connection based on the configuration identifier. The device may receive data from the host device based on changing the first characteristic of the first pseudowire connection and changing the second characteristic of the second pseudowire connection.

    Path monitoring system (PMS) controller or ingress node based multiprotocal label switching (MPLS) ping and traceroute in inter-autonomous system (AS) segment routing (SR) networks

    公开(公告)号:US11876695B2

    公开(公告)日:2024-01-16

    申请号:US17244896

    申请日:2021-04-29

    CPC classification number: H04L43/10 H04L43/0811 H04L45/08 H04L45/50

    Abstract: Echo or traceroute functionality is supported in a path spanning multiple autonomous systems (ASes) having segment routing (SR) enabled, the path including an ingress node and an egress node, by: (a) obtaining a return label stack to reach the ingress node from either (A) the egress node, or (B) a transit node in the path; (b) obtaining a label stack to reach, from the ingress node, either (A) the egress node, or (B) the transit node; (c) generating a request message including the return label stack; and (d) sending the request message towards either (A) the egress node, or (B) the transit node using the label stack. The example method may further include: (e) receiving, by either (A) the egress node, or (B) the transit node, the request message, wherein the request message includes information for performing a validity check; (f) performing a validity check using the information included in the request message to generate validity information; (g) generating a reply message including the validity information and information from the return label stack; and (h) sending the reply message towards the ingress node using information from the return label stack included in the request message.

    PING AND TRACEROUTE IN INTER-AUTONOMOUS SYSTEM (AS) SEGMENT ROUTING (SR) NETWORKS WITHOUT REQUIRING HEADEND ROUTER OR PATH MONITORING SYSTEM (PMS) CONTROLLER KNOWLEDGE OF TOPOLOGY OUTSIDE OF ORIGIN AS

    公开(公告)号:US20210250283A1

    公开(公告)日:2021-08-12

    申请号:US16787911

    申请日:2020-02-11

    Abstract: Ping or traceroute functionality is supported in a path spanning multiple autonomous systems (ASes) having segment routing (SR) enabled, the path including an ingress node in a first autonomous system (AS) and an egress node in an AS other than the first AS, using a reverse path label pair including (1) a node segment identifier (SID) corresponding to an AS Border Router (ASBR) of the second AS (second ASBR), and (2) an egress peer engineering (EPE) SID corresponding to a segment between the second ASBR to an ASBR of the first AS (first ASBR). Responsive to receiving a ping or traceroute request by a router in the second AS, the router generates a ping or traceroute reply including the reverse path label pair. The ping or traceroute reply is forwarded to the second ASBR using the node SID of the reverse path label pair. The ping or traceroute reply is then forwarded from the second ASBR to the first ASBR using the EPE SID of the reverse path label pair. Finally, the ping or traceroute reply can be forwarded (e.g., using standard IP forwarding) from the first ASBR to the headend router.

Patent Agency Ranking