Abstract:
Data processing systems which operate in different modes, including a mode which supports providing an output of images through a port on the systems. In one embodiment, a data processing system includes a processing system, a cellular telephone transceiver, and a port which is configured to provide, as an output from the handheld data processing system, data representing movie video images. Methods and machine readable media are also described.
Abstract:
Techniques for intercommunication amongst device drivers are described herein. In one embodiment, an application programming interface (API) is provided by a kernel of an operating system (OS) running within a data processing system. The API is accessible by device drivers associated with multiple devices installed in the system. In response to a request from a first instance of a driver via the API, information indicating whether another instance of the same driver is currently started is returned via the API. Other methods and apparatuses are also described.
Abstract:
Data processing systems which operate in different modes, including a mode which supports providing an output of images through a port on the systems. In one embodiment, a data processing system includes a processing system, a cellular telephone transceiver, and a port which is configured to provide, as an output from the handheld data processing system, data representing movie video images. Methods and machine readable media are also described.
Abstract:
Methods and apparatuses to dynamically manage a performance state of a data processing system are described. The data processing system includes a plurality of components; one or more buses coupled to the plurality of components, and a dynamic performance state manager unit coupled to the components. The dynamic performance state manager unit is configured to receive information about a first plurality of current states of components of the system. The dynamic performance state manager unit is configured to determine a second plurality of required system performance states for the components; and to determine a current system performance state based on the first plurality and the second plurality.
Abstract:
A method and an apparatus for establishing an operating environment by certifying a code image received from a host over a communication link are described. The code image may be digitally signed through a central authority server. Certification of the code image may be determined by a fingerprint embedded within a secure storage area such as a ROM (read only memory) of the portable device based on a public key certification process. A certified code image may be assigned a hash signature to be stored in a storage of the portable device. An operating environment of the portable device may be established after executing the certified code.
Abstract:
A method and an apparatus for configuring a key stored within a secure storage area (e.g., ROM) of a device including one of enabling and disabling the key according to a predetermined condition to execute a code image are described. The key may uniquely identify the device. The code image may be loaded from a provider satisfying a predetermined condition to set up at least one component of an operating environment of the device. Verification of the code image may be optional according to the configuration of the key. Secure execution of an unverified code image may be based on a configuration that disables the key.
Abstract:
A method and an apparatus for executing codes embedded inside a device to verify a code image loaded in a memory of the device are described. A code image may be executed after being verified as a trusted code image. The embedded codes may be stored in a secure ROM (read only memory) chip of the device. In one embodiment, the verification of the code image is based on a key stored within the secure ROM chip. The key may be unique to each device. Access to the key may be controlled by the associated secure ROM chip. The device may complete establishing an operating environment subsequent to executing the verified code image.
Abstract:
A method and an apparatus for configuring a key stored within a secure storage area (e.g., ROM) of a device including one of enabling and disabling the key according to a predetermined condition to execute a code image are described. The key may uniquely identify the device. The code image may be loaded from a provider satisfying a predetermined condition to set up at least one component of an operating environment of the device. Verification of the code image may be optional according to the configuration of the key. Secure execution of an unverified code image may be based on a configuration that disables the key.
Abstract:
A method and an apparatus for establishing an operating environment by certifying a code image received from a host over a communication link are described. The code image may be digitally signed through a central authority server. Certification of the code image may be determined by a fingerprint embedded within a secure storage area such as a ROM (read only memory) of the portable device based on a public key certification process. A certified code image may be assigned a hash signature to be stored in a storage of the portable device. An operating environment of the portable device may be established after executing the certified code.
Abstract:
A method and an apparatus for executing codes embedded inside a device to verify a code image loaded in a memory of the device are described. A code image may be executed after being verified as a trusted code image. The embedded codes may be stored in a secure ROM (read only memory) chip of the device. In one embodiment, the verification of the code image is based on a key stored within the secure ROM chip. The key may be unique to each device. Access to the key may be controlled by the associated secure ROM chip. The device may complete establishing an operating environment subsequent to executing the verified code image.