Abstract:
A request for a high voltage mode is received and a high voltage timer is started in response to determining that a remaining amount of high voltage credits exceeds a voltage switch threshold value. A switch to the high voltage mode is made in response to the request. A low voltage mode is switched to in response to an indication. The request may be received from an application running on a data processing system. If the indication is that the high voltage timer has expired, a low voltage timer is started in response to switching to low voltage mode. If the high voltage request is still active when the low voltage timer expires, a switch back to high voltage mode occurs and a new high voltage timer is started.
Abstract:
Methods and systems for managing power consumption in data processing systems are described. In one embodiment, a data processing system includes a general purpose processing unit, a graphics processing unit (GPU), at least one peripheral interface controller, at least one bus coupled to the general purpose processing unit, and a power controller coupled to at least the general purpose processing unit and the GPU. The power controller is configured to turn power off for the general purpose processing unit in response to a first state of an instruction queue of the general purpose processing unit and is configured to turn power off for the GPU in response to a second state of an instruction queue of the GPU. The first state and the second state represent an instruction queue having either no instructions or instructions for only future events or actions.
Abstract:
Data processing systems which operate in different modes, including a mode which supports providing an output of images through a port on the systems. In one embodiment, a data processing system includes a processing system, a cellular telephone transceiver, and a port which is configured to provide, as an output from the handheld data processing system, data representing movie video images. Methods and machine readable media are also described.
Abstract:
Methods and systems for managing power consumption in data processing systems are described. In one embodiment, a data processing system includes a general purpose processing unit, a graphics processing unit (GPU), at least one peripheral interface controller, at least one bus coupled to the general purpose processing unit, and a power controller coupled to at least the general purpose processing unit and the GPU. The power controller is configured to turn power off for the general purpose processing unit in response to a first state of an instruction queue of the general purpose processing unit and is configured to turn power off for the GPU in response to a second state of an instruction queue of the GPU. The first state and the second state represent an instruction queue having either no instructions or instructions for only future events or actions.
Abstract:
A request for a high voltage mode is received and a high voltage timer is started in response to determining that a remaining amount of high voltage credits exceeds a voltage switch threshold value. A switch to the high voltage mode is made in response to the request. A low voltage mode is switched to in response to an indication. The request may be received from an application running on a data processing system. If the indication is that the high voltage timer has expired, a low voltage timer is started in response to switching to low voltage mode. If the high voltage request is still active when the low voltage timer expires, a switch back to high voltage mode occurs and a new high voltage timer is started.
Abstract:
Methods and systems for managing power consumption in data processing systems are described. In one embodiment, a data processing system includes a general purpose processing unit, a graphics processing unit (GPU), at least one peripheral interface controller, at least one bus coupled to the general purpose processing unit, and a power controller coupled to at least the general purpose processing unit and the GPU. The power controller is configured to turn power off for the general purpose processing unit in response to a first state of an instruction queue of the general purpose processing unit and is configured to turn power off for the GPU in response to a second state of an instruction queue of the GPU. The first state and the second state represent an instruction queue having either no instructions or instructions for only future events or actions.
Abstract:
Data processing systems with interrupts and methods for operating such data processing systems and machine readable media for causing such methods and containing executable program instructions. In one embodiment, an exemplary data processing system includes a processing system, an interrupt controller coupled to the processing system and a timer circuit which is coupled to the interrupt controller. The interrupt controller is configured to provide a first interrupt signal and a second interrupt signal to the processing system. The processing system is configured to maintain a data structure (such as, e.g., a list) of time-related events for a plurality of processes, and the processing system is configured to cause the entry of a value, representing a period of time, into the timer circuit. The timer circuit is configured to cause an assertion of the first interrupt signal in response to an expiration of the time period.
Abstract:
Data processing systems with interrupts and methods for operating such data processing systems and machine readable media for causing such methods and containing executable program instructions. In one embodiment, an exemplary data processing system includes a processing system, an interrupt controller coupled to the processing system and a timer circuit which is coupled to the interrupt controller. The interrupt controller is configured to provide a first interrupt signal and a second interrupt signal to the processing system. The processing system is configured to maintain a data structure (such as, e.g., a list) of time-related events for a plurality of processes, and the processing system is configured to cause the entry of a value, representing a period of time, into the timer circuit. The timer circuit is configured to cause an assertion of the first interrupt signal in response to an expiration of the time period.
Abstract:
A method and an apparatus for configuring a key stored within a secure storage area (e.g., ROM) of a device including one of enabling and disabling the key according to a predetermined condition to execute a code image are described. The key may uniquely identify the device. The code image may be loaded from a provider satisfying a predetermined condition to set up at least one component of an operating environment of the device. Verification of the code image may be optional according to the configuration of the key. Secure execution of an unverified code image may be based on a configuration that disables the key.
Abstract:
Techniques for intercommunication amongst device drivers are described herein. In one embodiment, an application programming interface (API) is provided by a kernel of an operating system (OS) running within a data processing system. The API is accessible by device drivers associated with multiple devices installed in the system. In response to a request from a first instance of a driver the API, information indicating whether another instance of the same driver is currently started is returned via the API. Other methods and apparatuses are also described.