摘要:
A plate-type heat exchanger for use in a fuel cell system that has a fuel cell stack and a reformer is provided. The heat exchanger includes a substrate and a pair of cover plates. The substrate has a first face and a second face opposite to the first face. The substrate is disposed between the cover plates, and combined with the cover plates to form a first passageway and a second passageway. The first passageway is formed in the first face and circulates steam discharged from the fuel cell stack. The steam or water condensed from the steam is supplied to a water supply source. The second passageway is formed in the second face, and circulates water supplied from the water supply source. The water is supplied to the reformer after the circulation. The heat exchanger of the present invention improves performance and efficiency of a fuel cell system.
摘要:
A fuel cell system includes a fuel cell body to generate electrical energy using a reaction of hydrogen and oxygen; a reformer to generate a reformed gas containing hydrogen by reforming fuel and to supply the reformed gas to the fuel cell body; a fuel tank to store the fuel in a partially liquefied state and to supply the fuel to the reformer; a case to encase the fuel cell body and the reformer; and a refrigeration unit attached to the case to store ambient air of the fuel tank, the ambient air of the fuel tank being cooled by latent heat of vaporization of the fuel.
摘要:
A fuel cell system and a reformer for a fuel cell system prevents backfire and improves efficiency of heat transfer. The fuel cell system includes a reformer generating hydrogen gas from fuel including hydrogen by a catalytic chemical reaction using heat energy, and at least one electricity generating unit generating electrical energy by an electrochemical reaction between the hydrogen gas and oxygen. The reformer includes a case, a heat source, and a reforming reaction part. The case forms an external shape. The heat source is disposed in the case to generate heat energy by an oxidation reaction between fuel and a catalyst, and includes a mesh, an oxidation catalyst layer formed on a surface of the mesh, and at least one fuel injection nozzle supplying the fuel to the oxidation catalyst layer. The reforming reaction part is disposed in the case to generate hydrogen gas from fuel using the heat energy generated from the heat source.
摘要:
A fuel cell system and a reformer for a fuel cell system prevents backfire and improves efficiency of heat transfer. The fuel cell system includes a reformer generating hydrogen gas from fuel including hydrogen by a catalytic chemical reaction using heat energy, and at least one electricity generating unit generating electrical energy by an electrochemical reaction between the hydrogen gas and oxygen. The reformer includes a case, a heat source, and a reforming reaction part. The case forms an external shape. The heat source is disposed in the case to generate heat energy by an oxidation reaction between fuel and a catalyst, and includes a mesh, an oxidation catalyst layer formed on a surface of the mesh, and at least one fuel injection nozzle supplying the fuel to the oxidation catalyst layer. The reforming reaction part is disposed in the case to generate hydrogen gas from fuel using the heat energy generated from the heat source.
摘要:
In a fuel cell, a fuel cell stack for high temperature comprises: a main body of the fuel cell having an electrolyte membrane, and an anode electrode and a cathode electrode bonded to both sides of the electrolyte membrane for generating electric energy by electro-chemically reacting fuel supplied to the anode electrode and oxidizer supplied to the cathode electrode; and a heater having a chamber attached to the main body of the fuel cell and an oxidation catalyst installed inside the chamber. The heater generates heat by oxidizing fuel supplied to the inside of the chamber, and heats the main body of the fuel cell with the generated heat. According to the present invention, it is possible to significantly reduce the starting time of the main body of the fuel cell, and to easily control a starting temperature of the main body of the fuel cell.
摘要:
A carbon monoxide treatment apparatus according to an exemplary embodiment of the present invention includes: a reactor body; a partitioning plate located inside the reactor body for partitioning an internal space of the reactor body into a first section and a second section; a channel member in the first section for transporting an introduced gas including a reformed gas and an oxidant gas to the second section; and a reaction unit around the channel member of the first section for reducing a concentration level of carbon monoxide in the introduced gas moving through the first section by utilizing a preferential oxidation reaction of the carbon monoxide and the oxidant gas of the introduced gas, wherein moisture of the introduced gas that has been partially condensed when passing through the channel member is stored in the second section.
摘要:
Disclosed are a reformer with a plurality of heaters for precisely controlling the temperature thereof, and a fuel cell system using the same. The fuel cell system is constructed with an electric generator that generates electricity through electrochemical reaction between hydrogen and oxygen, a pump that supply the electric generator with oxygen in the air, a reformer that supplies the electric generator with hydrogen, a water container that supplies the reformer with water, and a fuel container that supplies the reformer with reforming fuel containing hydrogen and inflammable combustion fuel. The reformer in the fuel cell system is constructed with a reforming reaction unit that receives thermal energy and reforms reforming fuel containing hydrogen into hydrogen through a catalyst, a heat source unit that supplies the reforming reaction unit with heat obtained by burning inflammable combustion fuel, and an auxiliary heat source unit that supplies the reforming reaction unit with heat generated from a hot wire using electric energy.
摘要:
A plate-type heat exchanger for use in a fuel cell system that has a fuel cell stack and a reformer is provided. The heat exchanger includes a substrate and a pair of cover plates. The substrate has a first face and a second face opposite to the first face. The substrate is disposed between the cover plates, and combined with the cover plates to form a first passageway and a second passageway. The first passageway is formed in the first face and circulates steam discharged from the fuel cell stack. The steam or water condensed from the steam is supplied to a water supply source. The second passageway is formed in the second face, and circulates water supplied from the water supply source. The water is supplied to the reformer after the circulation. The heat exchanger of the present invention improves performance and efficiency of a fuel cell system.
摘要:
A carbon monoxide treatment apparatus according to an exemplary embodiment of the present invention includes: a reactor body; a partitioning plate located inside the reactor body for partitioning an internal space of the reactor body into a first section and a second section; a channel member in the first section for transporting an introduced gas including a reformed gas and an oxidant gas to the second section; and a reaction unit around the channel member of the first section for reducing a concentration level of carbon monoxide in the introduced gas moving through the first section by utilizing a preferential oxidation reaction of the carbon monoxide and the oxidant gas of the introduced gas, wherein moisture of the introduced gas that has been partially condensed when passing through the channel member is stored in the second section.
摘要:
A fuel reforming apparatus includes an oxidation reaction unit in which an oxidation catalyst is formed, a reforming reaction unit in which a reforming catalyst is formed, and an ignition unit for igniting a hydrocarbon-containing fuel and an oxidant and preheating the oxidation catalyst in an early driving stage. The oxidation reaction unit has a first section and a second section respectively formed opposite to each other with the oxidation catalyst interposed therebetween and forms a stream of the fuel and the oxidant flowing to the second section through the oxidation catalyst from the first section, the ignition unit being located in the second section.