Abstract:
According to one embodiment, there is provided an electrode for battery which includes a current collector and an active material layer provided on the current collector. The active material layer contains particles of a lithium titanate compound having a spinel structure and a basic polymer. Here, the basic polymer is coating at least a part of the surface of the particles of the lithium titanate compound.
Abstract:
According to one embodiment, there are provided an active material for a battery having a high effective capacity, a nonaqueous electrolyte battery, and a battery pack. The active material contains a niobium-titanium composite oxide. When the active material is subjected to powder X-ray diffraction (XRD) using a Cu-Kα ray source, a peak appears in a range of 2θ=5°±0.5° in the diffraction pattern.
Abstract:
According to one embodiment, there is provided an electrode material. The electrode material includes an active material which includes a titanium oxide compound having a monoclinic titanium dioxide crystal structure. The electrode material further includes a compound which exists on the surface of the active material and has a trialkylsilyl group represented by the formula (I). wherein R1, R2 and R3, which may be the same or different, respectively represent an alkyl group having 1 to 10 carbon atoms.
Abstract:
An apparatus is disclosed that includes a resistance measuring unit operable to determine a solution resistance Rsol and a charge transfer resistance Rct of a battery; and at least one computer-readable non-transitory storage medium comprising code, that, when executed by at least one processor, is operable to provide an estimate of the present value of the battery by: comparing Rsol and Rct to historical deterioration transition information; estimating the number of remaining charge cycles before a discharge capacity lower limit is reached by the battery using the comparison; and estimating the number of remaining charge cycles before a discharge time lower limit is reached by the battery using the comparison. The estimate of the present value of the battery includes the smaller of the number of remaining charge cycles before a discharge capacity lower limit is reached or the number of remaining charge cycles before a discharge time lower limit is reached.
Abstract:
According to one embodiment, a battery is provided. The battery includes a positive electrode, and a negative electrode including a negative electrode active material-containing layer including a niobium-titanium composite oxide and a conductive agent that includes a carbon material. The negative electrode active material-containing layer includes a principal surface facing the positive electrode. Assuming that the thickness of the negative electrode active material-containing layer is A, a ratio (C2/C1) of carbon content ratio C2 at a depth of 0.5 A from the principal surface to carbon content ratio C1 at a depth of 1 μm from the principal surface satisfies 2≤C2/C1≤30.
Abstract:
According to one embodiment, an electrode material is provided. The electrode material includes active material particle containing: a niobium-titanium composite oxide having an average composition in which a molar ratio of niobium to titanium (MNb/MTi) is greater than 2; and at least one element A selected from the group consisting of potassium, iron and phosphorus. The active material particle contain the element A at a concentration in the range of 100 ppm to 2000 ppm.
Abstract:
According to one embodiment, there is provided an active material represented by a general formula Lix(NiaCobMncMd)1−s(Nb1−t−uTatM′u)sO2. Here, M is at least one selected from the group consisting of Li, Ca, Mg, Al, Ti, V, Cr, Zr, Mo, Hf, and W, M′ is at least one selected from the group consisting of K, P, Fe, Si, Na, Cu and Zn, and 1.0≤x≤1.3, 0≤a≤0.9, 0≤b≤1.0, 0≤c≤0.8, 0≤d≤0.5, a+b+c+d=1, 0.005≤s≤0.3, 0.0005≤t≤0.1, and 0≤u≤0.3 are satisfied.
Abstract:
According to one embodiment, provided is a secondary battery including a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a niobium-titanium composite oxide having fluorine atoms on at least part of a surface the niobium-titanium composite oxide. An abundance ratio AF of fluorine atoms, an abundance ratio ATi of titanium atoms, and an abundance ratio ANb of niobium atoms on a surface of the negative electrode according to X-ray photoelectron spectroscopy satisfy a relationship of 3.5≤AF/(ATi+ANb)≤50.
Abstract:
According to one embodiment, an electrode is provided. The electrode includes a current collector, a first layer formed on the current collector, and a second layer formed on at least part of the first layer. The first layer contains a monoclinic niobium titanium composite oxide. The second layer contains lithium titanate having a spinel structure. A porosity P2 of the second layer is within a range from 30% to 80%.
Abstract:
According to one embodiment, an electrode is provided. A length of a first active material portion along a first direction is within a range of 0.7T or more and 0.95T or less with respect to a thickness T of an active material-containing layer. The first direction is parallel to a thickness direction. A second active material portion further contains solid electrolyte particles. A ratio E1/E2 is 0 or more and 0.01 or less. The ratio E1/E2 represents a ratio of a content E1 of the solid electrolyte particles per unit area in the first active material portion (including 0) to a content E2 of the solid electrolyte particles per unit area in the second active material portion.