Abstract:
Methods and apparatus are provided for direct synthesis of RF signals using a delta-sigma modulator. An RF signal is synthesized from an input signal by quantizing the input signal using a quantizer, such as a one bit quantizer; determining a quantization error associated with the quantizer; generating an error prediction value using an error predictive filter, wherein the error predictive filter comprises one or more filter zeroes on a unit circle for one or more desired frequencies of f1, f2, . . . fn and one or more filter poles having a magnitude inside the unit circle and a frequency substantially equal to the one or more desired frequencies of f1, f2, . . . fn; and subtracting the error prediction value from the input signal. The filter poles have a magnitude that reduces a boost provided out-of-band.
Abstract:
In one embodiment, a receiver is provided for use in a multiple-input system that includes a receiving antenna receiving a time-domain signal corresponding to a plurality of signals transmitted from a plurality of transmitting antennas. The receiver includes: (a) a transform unit adapted to transform the time-domain signal into a frequency-domain signal; (b) a channel estimation unit adapted to estimate, based on the frequency-domain signal and a frequency-domain pilot signal, a combined transfer function corresponding to a plurality of transfer functions of respective channels between the plurality of transmitting antennas and the receiving antenna; and (c) a channel separation unit including a plurality of frequency-domain convolution units that separate the combined transfer function into a plurality of estimated channel transfer functions.
Abstract:
A method and apparatus are provided for joint equalization and decoding of multilevel codes, such as the Multilevel Threshold-3 (MLT-3) code, which are transmitted over dispersive channels. The MLT-3 code is treated as a code generated by a finite-state machine using a trellis having state dependencies between the various states. A super trellis concatenates the MLT-3 trellis with a trellis representation of the channel. Joint equalization and decoding of the received signal can be performed using the super trellis. A sequence detector is disclosed that uses the super trellis or a corresponding reduced-state trellis to perform joint equalization and decoding of the received signal to decode the MLT-3 coded data bits. The sequence detector may be embodied using maximum likelihood sequence estimation that applies the optimum Viterbi algorithm or a reduced complexity sequence estimation method, such as the reduced-state sequence estimation (RSSE) algorithm.
Abstract:
A method and apparatus are disclosed for canceling cross-talk in a frequency-division multiplexed communication system. The disclosed frequency-division multiplexed communication system employs multiple carriers having overlapping channels and provides an improved cross-talk cancellation mechanism to address the resulting interference. Bandwidth compression is achieved using n level amplitude modulation in each frequency band. An FDM receiver is also disclosed that decomposes the received broadband signal into each of its respective frequency bands and returns the signal to basehand in the analog domain. Analog requirements are relaxed by removing cross-talk from adjacent R-F channels, from image bands, and minimizing the performance degradation caused by In-phase and Quadrature-phase (I/Q) phase and gain mismatches in modulators and demodulators. The disclosed transmitter or receiver (or both) can be fabricated on a single integrated circuit.
Abstract:
Methods and apparatus are provided for whitening quantization noise in a delta-sigma modulator using a dither signal. An input signal is quantized using a predictive delta-sigma modulator by quantizing the input signal using a quantizer; adding a dither signal at a first location of the predictive delta-sigma modulator; determining a quantization error associated with the quantizer; removing the dither signal at a second location of the predictive delta-sigma modulator (for example, by subtracting a substantially similar version of the dither signal at the second location); generating an error prediction value using an error predictive filter; and subtracting the error prediction value from the input signal. The dither signal may be a white noise signal and may optionally be generated using a pseudo-random number generator.
Abstract:
Methods and apparatus are provided for improved phase linearity in a multi-phase based clock/timing recovery system. Averaging and interpolation techniques improve phase linearity in a multi-phase clock system. A multi-phase output clock is generated in accordance with one aspect of the invention by generating a plurality of clocks each having a substantially similar frequency and a different phase; applying each of the plurality of clocks to at least one corresponding amplifier such as a differential pair circuit; and summing an output of the corresponding amplifiers to generate the multi-phase output clock. A multiple-stage averaging operation can provide further linearity improvements.
Abstract:
Methods and apparatus are provided for look-ahead block processing in predictive delta-sigma modulators. An input signal is quantized using a predictive delta-sigma modulator by generating error prediction values for a current block of input values based on a linear combination of error prediction values from one or more previous blocks, input values of one or more previous blocks, quantized values of one or more previous blocks and the current block of input values; computing speculative error prediction values for at least one input value in the current block, wherein the speculative error prediction values are computed for a plurality of possible quantizer output values; selecting one of the speculative error prediction values based on a quantized value from the current block; and subtracting the error prediction values for the current block from the corresponding current block of input values.
Abstract:
Methods and apparatus are provided for whitening quantization noise in a delta-sigma modulator using a dither signal. An input signal is quantized using a predictive delta-sigma modulator by quantizing the input signal using a quantizer; adding a dither signal at a first location of the predictive delta-sigma modulator; determining a quantization error associated with the quantizer; removing the dither signal at a second location of the predictive delta-sigma modulator (for example, by subtracting a substantially similar version of the dither signal at the second location); generating an error prediction value using an error predictive filter; and subtracting the error prediction value from the input signal. The dither signal may be a white noise signal and may optionally be generated using a pseudo-random number generator.
Abstract:
A digital signal processor is provided having an instruction set with an xK function that uses a reduced look-up table. The disclosed digital signal processor evaluates an xK function for an input value, x, by computing Log(x) in hardware; multiplying the Log(x) value by K; and determining the xK function by applying an exponential function in hardware to a result of the multiplying step. One or more of the computation of Log(x) and the exponential function employ at least one look-up table having entries with a fewer number of bits than a number of bits in the input value, x.
Abstract:
A digital signal processor and method are disclosed having an instruction set with one or more non-linear functions using a look-up table of reduced size and exponentially varying step-sizes. A digital signal processor evaluates a non-linear function for a value, x, by obtaining at least two values from at least one look-up table for the non-linear function that are near the value, x, wherein the at least one look-up table stores a subset of values for the non-linear function using exponentially-varying step sizes; and interpolating the at least two obtained values lo to obtain a result, y. A position of a leading zero in the value, x, can be used as an index into the at least one look-up table. The interpolation can comprise, for example, a linear interpolation or a polynomial interpolation. A modulo arithmetic operation can optionally be employed for a periodic non-linear function.