摘要:
The present invention provides compositions and methods for use in enzyme replacement therapy. The inventors disclose a method of producing membrane bound enzymes in an active soluble form by eliminating the glycosylphosphatidylinositol (GPI) membrane anchor. In particular the inventors disclose a soluble active form of the membrane bound enzyme TNSALP which they produced by deleting the GPI anchor single peptide sequence. They have further shown that this composition is useful for treatment of hypophosphatasia. The inventors also disclose oligo acid amino acid variants thereof which specifically target bone tissue.
摘要:
Disclosed are methods and compositions for determining immunodominant peptides of target enzymes used in enzyme replacement therapy for lysosomal storage disorders. More specifically disclosed are immunodominant peptides for N-acetylgalactosamine-6-sulfatase (GALNS). Also disclosed are methods of inducing oral tolerance towards a target enzyme through oral administration of immunodominant peptides prior to commencing enzyme replacement therapy. More specifically disclosed is a method of inducing oral tolerance for GALNS, by orally administering specific immunodominant peptides for GALNS; in subjects suffering from mucopolysaccharidosis type IVA prior to commencing enzyme replacement therapy using GALNS.
摘要:
The present invention provides compositions and methods for use in enzyme replacement therapy. The inventors disclose a method of producing membrane bound enzymes in an active soluble form by eliminating the glycosylphosphatidylinositol (GPI) membrane anchor. In particular the inventors disclose a soluble active form of the membrane bound enzyme TNSALP which they produced by deleting the GPI anchor single peptide sequence. They have further shown that this composition is useful for treatment of hypophosphatasia. The inventors also disclose oligo acid amino acid variants thereof which specifically target bone tissue.
摘要:
The present invention provides compositions and methods for use in enzyme replacement therapy. The inventors disclose a method of producing membrane bound enzymes in an active soluble form by eliminating the glycosylphosphatidylinositol (GPI) membrane anchor. In particular the inventors disclose a soluble active form of the membrane bound enzyme TNSALP which they produced by deleting the GPI anchor single peptide sequence. They have further shown that this composition is useful for treatment of hypophosphatasia. The inventors also disclose oligo acid amino acid variants thereof which specifically target bone tissue.
摘要:
Disclosed are a fusion protein comprising enzyme N-acetylgalactosamine-6-sulfate sulfatase and a short peptide consisting of 4-15 acidic amino acids attached to the enzyme on its N-terminal side, a pharmaceutical composition containing the fusion protein, and a method for treatment of type A Morquio disease using the fusion protein. Compared with the native enzyme protein, the fusion protein exhibits higher transferability to bone tissues and improved, higher stability in the blood.
摘要:
The present invention provides a polypeptide therapeutic agent, useful in enzyme replacement therapy, with increased therapeutic benefits for the central nervous system. The invention provides a method of enhancing the effect of a polypeptide or protein on the central nervous system by the attachment of a short acidic amino acid sequence. Specifically the inventors disclose the attachment of a 4-15 acidic amino acid sequence to human β-glucuronidase by construction of a fusion protein. This molecule is useful in the treatment of type VII mucopolysaccharidosis when administered to a patient.