Abstract:
A wireless communication system uses a spatial spreading matrix to simultaneously transmit various different streams of encoded symbol data simultaneously via multiple transmission antennas, wherein the spatial spreading matrix is designed to assure that the different transmission antennas provide equal power output in the presence of both correlated and uncorrelated data within the different encoded symbol streams. The use of this spatial spreading matrix reduces or eliminates the condition in which a particular one of the transmission antennas needs to operate at an output power that is significantly higher than the others of the transmission antennas, which might lead to saturation of, or to the non-linear or abnormal operation of a power amplifier associated with the particular transmission antenna, resulting in improper amplification for that particular transmission antenna.
Abstract:
Systems and techniques relating to processing a signal received over a wireless channel. A technique includes adaptively determining a data rate of packetized information transmission based on both a signal quality measure of a received signal and a channel quality measure derived from the received signal, the channel quality measure being indicative of frequency selectivity in the wireless channel. An apparatus includes a channel estimator configured to be responsive to a received OFDM signal corresponding to multiple frequency tones of the channel, and configured to evaluate channel response characteristics of the frequency tones; and a channel state indicator configured to generate a channel quality measure usable along with a signal quality measure in adaptively determining a data rate of packetized information transmission, wherein the channel quality measure is generated from the channel response characteristics of the frequency tones and is indicative of frequency selectivity in the wireless channel.
Abstract:
A system including a plurality of filter modules to respectively communicate with a plurality of antennas, filter signals from channels other than a communication channel of a first wireless network, where the communication channel includes a first channel and a second channel, and generate a plurality of signals. A sensing module senses, based on the plurality of signals, whether radio frequency signals from a second network are present in at least one of the first channel and the second channel, and generates a plurality of control signals indicating presence or absence of the radio frequency signals in at least one of the first channel and the second channel. A channel identification module determines, based on the plurality of control signals, availability of the first channel and the second channel in response to whether the radio frequency signals are present in the first channel and the second channel.
Abstract:
A method including: receiving, through a wireless channel, a plurality of modulated signals at a plurality of antennas, wherein each antenna receives a corresponding modulated signal; generating a plurality of autocorrelated signals by autocorrelating the plurality of modulated signals; determining whether a signal strength associated with each modulated signal is (i) below a threshold or (ii) above the threshold; for each modulated signal having a signal strength below the threshold, disabling the antenna that received the modulated signal having the signal strength below the threshold; combining the modulated signals having a signal strength above the threshold; generating weighted autocorrelated signals based on (i) the plurality of autocorrelated signals and (ii) the combined modulated signals; generating a combined weighted signal by summing the weighted autocorrelation signals; demodulating the combined weighted signal; and determining a state of the wireless channel based on the demodulation of the combined weighted signal.
Abstract:
A system includes a signal processing module and a control module. The signal processing module receives a first clear channel assessment (CCA) signal for a first sub-channel of a communication channel, increases a pulse width of the first CCA signal by a predetermined period of time, and generates a second CCA signal. The control module receives the second CCA signal and a third CCA signal for a second sub-channel of the communication channel. The control module transmits data via one of the second sub-channel and the communication channel based on the second and third CCA signals.
Abstract:
Methods and apparatus are provided for performing LLR value computations in a pipeline. Portions of a metric used to compute LLR values are computed in one pipeline part. The portions correspond to all permutations of some received signal streams. The portions are combined with one permutation x2 of the received signal stream that was not included in the previous pipeline computation in a subsequent pipeline part to produce M values associated with a particular bit position. At each subsequent clock cycle, a different permutation of x2 is combined with the previously computed portions producing different M values. State values corresponding to different values of bit positions of the received stream are computed by finding the minimum among the M values, in each clock cycle, that affect a particular bit position. The state values are combined to compute the LLR values for the bit position in a final pipeline part.
Abstract:
A sub-matrix is selected from an estimated multiple input, multiple output (MIMO) channel matrix, wherein the estimated MIMO channel matrix is constructed based on a codebook. A singular value decomposition (SVD) is calculated based on the sub-matrix. A steering matrix is calculated based on the SVD and the codebook.
Abstract:
A system includes a signal processing module and a control module. The signal processing module receives a first clear channel assessment (CCA) signal for a first sub-channel of a communication channel, increases a pulse width of the first CCA signal by a predetermined period of time, and generates a second CCA signal. The control module receives the second CCA signal and a third CCA signal for a second sub-channel of the communication channel. The control module transmits data via one of the second sub-channel and the communication channel based on the second and third CCA signals.
Abstract:
A transmitter beamforming technique for use in a MIMO wireless communication system determines a partial description of a reverse channel without determining a full dimensional description of the reverse channel. A correction matrix is developed from the partial description of the reverse channel and a description of the forward channel. The correction matrix is used to process signals to be transmitted via the forward channel, and a steering matrix is used to perform beamforming in the forward channel.
Abstract:
An OFDM (Orthogonal Frequency Division Multiplexing) system may utilize pilot symbol structures including two or more pilot symbols with pilot information on alternate tones. The pilot information in one symbol is transmitted on mirror tones in another of the symbols. The pilot symbol structure may include a copy of one of the pilot symbols to aid in frequency offset estimation.