Abstract:
The present invention relates to a wireless communication system. A method for transmitting channel state information (CSI) by a user equipment in a wireless communication system includes receiving a CSI-reference signal (CSI-RS), determining overhead of a common reference signal (CRS) resource element based on the same antenna port number as an antenna port number associated with the CSI-RS, and transmitting the CSI calculated based on the CSI-RS and the overhead of the CRS resource element.
Abstract:
The present document related to a method and apparatus for transceiving a signal capable of verifying the validity of an available channel in a wireless communication system. According to the present invention, a scheme for transceiving available channel information, a scheme for requesting/responding to a channel validity inquiry, and a scheme for transceiving a contact verification signal are provided, and accordingly, a scheme for supporting the accurate and efficient operation of an unlicensed device while protecting a licensed device in a whitespace band is provided.
Abstract:
According to an embodiment of the present invention, disclosed is a method for supporting, by a serving base station, cancellation of interference signals from signals received at a target terminal in a wireless communication system. The method comprises the steps of: receiving scheduling information of at least one neighboring base station from the at least one neighboring base station; configuring a set of auxiliary information for canceling the interference signals of a target terminal on the basis of the scheduling information of the at least one neighboring base station; and transmitting the set of auxiliary information for canceling the interference signals of the target terminal to the target terminal, wherein the auxiliary information comprises at least one of demodulation reference signal (DM-RS) related information and cell-specific reference signal (CRS) related information in association with interference signals from respective neighboring base stations.
Abstract:
According to one embodiment of the present invention, disclosed is a method for measuring a subband by pico base station(s) located within a coverage of a macro base station in a wireless communication system. The method is performed by a first pico base station, and comprises the steps of: receiving beacon signals from other pico base station(s) in the coverage of the macro base station via each subband of all the subbands of the whole band of the wireless communication system, and measuring the receiving quality of the beacon signal received via each subband; determining whether to select at least one subband from among said all subbands based on the measured receiving quality of the beacon signal; and transmitting, if at least one subband is selected, the beacon signal via the selected at least one subband.
Abstract:
According to one embodiment of the present invention, a method by which a coordinated multi-point transmission and reception (CoMP) scheduling device supports communication of a CoMP cluster in a wireless communication system supporting CoMP can comprise the steps of: receiving channel state information (CSI) measured by at least one terminal served by at least one base station in the CoMP cluster; selecting terminal(s) to be served as a CoMP operation on the basis of the received CSI measured by the at least one terminal and determining scheduling information for the selected terminal(s); and transmitting the scheduling information for the selected terminal(s) to at least one base station for serving the CoMP operation of the selected terminal(s).
Abstract:
In a wireless communication system according to the present invention, a plurality of synchronization signals may be transmitted on a cell. The plurality of synchronization signals may be respectively associated with a plurality of random access channel establishments. A user equipment may receive at least one of the plurality of synchronization signals. The user equipment may transmit a random access channel using a random access channel.
Abstract:
A method for measuring a Synchronization Signal Block (SSB) by a terminal in a wireless communication system. In particular, the method may include: receiving a cell list including information of at least one first cell, first SSB transmission periodicity information for the at least one cell, and second SSB transmission periodicity information for a second cell that is not included in the cell list; measuring Reference Signal Received Power (RSRP) for an SSB of the at least one first cell based on a first SSB measurement window, which is set up by using the first SSB transmission periodicity information; and measuring RSRP for an SSB of the second cell based on a second SSB measurement window, which is set up by using the second SSB transmission periodicity information.
Abstract:
Discloses are a method for a terminal for transmitting an uplink signal to a base station and an apparatus supporting the method in a licensed assisted access (LAA) system in which a base station or a terminal transmits listen-before-talk (LBT)-based signals. Specifically, disclosed are a method for a terminal transmitting an uplink signal by executing a particular LBT action and an apparatus supporting the method if the uplink signal is transmitted by the terminal by sharing a maximum channel occupancy time (MCOT) with a base station.
Abstract:
The present invention discloses a method for transmitting and receiving signals between a user equipment and a base station in a wireless communication system and device for supporting the same. More specifically, the invention discloses a method by which, when a base station transmits synchronization signal blocks in various beam directions, a user equipment achieves synchronization with the base station by detecting the index of a received synchronization signal block and then transmits and receives signals with the base station.
Abstract:
Disclosed are methods for transmission and reception of downlink control information between a base station and a terminal, and devices for supporting same. Disclosed more particularly are: methods whereby a base station transmits downlink control information by means of an analogue beam independently determined for every one or more symbols (e.g., a unit of one or more symbols) and, in response to the base station, a terminal receives, by means of a serving beam of the terminal, the downlink control information transmitted by means of the analogue beam, which corresponds to the serving beam; and devices for supporting same.