Abstract:
A solar cell module includes a plurality of solar cells each including a semiconductor substrate, first electrodes positioned on a front surface of the semiconductor substrate, and second electrodes positioned on a back surface of the semiconductor substrate, and a plurality of wiring members connecting the first electrodes of a first solar cell of the plurality of solar cells to the second electrode of a second solar cell adjacent to the first solar cell. At least a portion of the first electrodes includes first pads each having a width greater than a width of the first electrode at crossings of the wiring members and the first electrodes. A size of at least one of the first pads is different from a size of the remaining first pads.
Abstract:
A solar cell module includes an upper substrate, a lower substrate opposite the upper substrate, a solar cell panel positioned between the upper substrate and the lower substrate, the solar cell panel including a plurality of solar cells which are arranged in a matrix form and are connected to one another through a wiring member to form strings, a passivation layer configured to package the solar cell panel, a frame configured to surround an outer perimeter of the solar cell panel, a connection terminal configured to connect two adjacent strings in the solar cell panel, and a cover member configured to cover the connection terminal.
Abstract:
Discussed is a solar cell including a semiconductor substrate, a first conductive type region formed on a surface of the semiconductor substrate, a second conductive type region formed on the other surface of the semiconductor substrate, the second conductive type region being spaced from an edge of the semiconductor substrate and having a conductive type different from that of the first conductive type region, an isolation portion formed at a perimeter of the second conductive type region on the other surface of the semiconductor substrate, a first electrode connected to the first conductive type region, and a second electrode connected to the second conductive type region, wherein the second conductive type region has a boundary portion in a part adjacent to the isolation portion, and in which a doping concentration or a junction depth varies over a width of the boundary portion.
Abstract:
Discussed is a method for manufacturing a mask for a solar cell according to an embodiment, the method including preparing a plate formed of a nonmetallic material, and irradiating the plate with a laser and forming a plurality of slits.
Abstract:
A refrigerator enables a user to easily introduce and remove goods into and from the refrigerator. Specifically, the refrigerator enables a drawer for receiving goods to be more conveniently used. The refrigerator includes a cabinet having a storage compartment with a food introduction port at the front thereof, a door hingedly connected to the cabinet for opening and closing the storage compartment, drawers disposed in the storage compartment and arranged vertically, a moving frame extending vertically to correspond to the height at which the drawers are disposed, the moving frame being configured to selectively push the drawers such that the drawers are moved toward the food introduction port, an electric driving unit coupled to the moving frame for moving the moving frame toward the food introduction port, and a controller for controlling the electric driving unit to move the moving frame when it is sensed that the door is open.
Abstract:
A self-assembly device comprises a chamber configured to accommodate a fluid in which a plurality of light emitting devices are floated on a surface thereof, the fluid having a first height, a mounting part disposed on a bottom portion of the chamber to mount a substrate, a fluid level adjuster configured to adjust a height of the fluid, and a voltage supplier configured to apply a voltage to the substrate to assemble the floated plurality of light emitting devices when the height of the fluid decreases from the first height to a second height.
Abstract:
A refrigerator that is capable of enabling a user to easily introduce or remove goods into or from the refrigerator is described. Specifically, a refrigerator that is capable of enabling a drawer for receiving goods to be more conveniently used is described. The refrigerator includes a cabinet having a storage compartment with a food introduction port formed in the front thereof, a door hingedly connected to the cabinet for opening and closing the storage compartment, a plurality of drawers disposed in the storage compartment, the drawers being arranged vertically, a moving frame extending vertically so as to correspond to the height at which the drawers are disposed, the moving frame being configured to selectively push the drawers such that the drawers are moved toward the food introduction port, an electric driving unit coupled to the moving frame for moving the moving frame toward the food introduction port, and a controller for controlling the electric driving unit to move the moving frame when it is sensed that the door is open.
Abstract:
A solar cell according to an embodiment of the present disclosure is positioned so that a second solar cell adjacent to a first solar cell in a first direction have an adjacent portion in contact with or overlapping with the first solar cell in the first direction on a front surface of the first solar cell. In this case, a plurality of wiring members connecting the first and second solar cells are formed to be extended to the front surface of the first solar cell, the adjacent portion, and the rear surface of the second solar cell.
Abstract:
A solar cell module includes an upper substrate, a lower substrate opposite the upper substrate, a solar cell panel positioned between the upper substrate and the lower substrate, the solar cell panel including a plurality of solar cells which are arranged in a matrix form and are connected to one another through a wiring member, a passivation layer configured to package the solar cell panel, a frame configured to surround an outer perimeter of the solar cell panel, a connection terminal configured to connect two adjacent strings in the solar cell panel, and a cover member configured to cover the connection terminal.
Abstract:
An apparatus for attaching an interconnector of a solar cell panel, includes an interconnector supply unit for unwinding the interconnector wound around a winding roll and moving the interconnector in a processing direction; and an attachment unit for attaching the interconnector to a solar cell, wherein the interconnector supply unit includes the winding roll, around which the interconnector is wound; and an unwinding control member for unwinding the interconnector from the winding roll, and wherein the unwinding control member allows the interconnector to be unwound so as to pass through one end of the winding roll in a longitudinal direction.