Abstract:
A method of manufacturing a solar cell is disclosed. The method includes forming a doping region including first and second portions having different doping concentrations by ion-implanting a dopant into a semiconductor substrate and forming an electrode connected to the doping region. In the forming of the doping region, the first and second portions are simultaneously formed by the same process using a mask that is disposed at a distance from the semiconductor substrate.
Abstract:
Discussed is a solar cell including a semiconductor substrate comprising a base region, an emitter region having a conductive type opposite to that of the base region, and a back surface field region having the same conductive type as the base region and a higher doping concentration than the base region, and a first electrode and a second electrode respectively connected to the emitter region and the back surface field region, wherein the base region has a specific resistance of 0.3 Ωcm to 2.5 Ωcm.
Abstract:
Discussed is a solar cell including a semiconductor substrate, a first conductive type region formed on a surface of the semiconductor substrate, a second conductive type region formed on the other surface of the semiconductor substrate, the second conductive type region being spaced from an edge of the semiconductor substrate and having a conductive type different from that of the first conductive type region, an isolation portion formed at a perimeter of the second conductive type region on the other surface of the semiconductor substrate, a first electrode connected to the first conductive type region, and a second electrode connected to the second conductive type region, wherein the second conductive type region has a boundary portion in a part adjacent to the isolation portion, and in which a doping concentration or a junction depth varies over a width of the boundary portion.
Abstract:
A manufacturing method of an embodiment according to the present invention may comprise the steps of: locating a solar cell, including a semiconductor substrate and a semiconductor layer which has an absorption coefficient higher than that of the semiconductor substrate and is formed on at least one side of the semiconductor substrate, such that the semiconductor layer is oriented toward a laser; emitting a laser beam toward the semiconductor layer to form a groove on the solar cell; and dividing the solar cell along the groove into a plurality of pieces.
Abstract:
A method for manufacturing a solar cell, the method comprising: forming an emitter region that forms a p-n junction with a semiconductor substrate of a first conductive type; forming a passivation layer on the semiconductor substrate; forming a dopant layer containing impurities of the first conductive type on the passivation layer; and locally forming a back surface field region at the semiconductor substrate by irradiating laser beams onto the semiconductor substrate to diffuse the impurities of the first conductive type into the semiconductor substrate.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The method for manufacturing the solar cell includes injecting impurities of a second conductive type opposite a first conductive type into an entire first surface of a semiconductor substrate containing impurities of the first conductive type, the semiconductor substrate having the first surface, a side surface, and a second surface opposite the first surface, forming a doping barrier layer on the entire first surface and the entire side surface of the semiconductor substrate, and at an edge portion of the second surface of the semiconductor substrate, injecting the impurities of the first conductive type into the second surface of the semiconductor substrate at which the doping barrier layer is not formed, at a higher concentration than the semiconductor substrate, performing a thermal process on the semiconductor substrate to simultaneously form an emitter region of the second conductive type at the entire first and side surfaces of the semiconductor substrate and a back surface field region of the first conductive type at the second surface of the semiconductor substrate, and removing the doping barrier layer.
Abstract:
Disclosed is method of manufacturing a solar cell including forming a barrier film over at least one surface of a semiconductor substrate or a semiconductor layer, forming a first conductive area on the at least one surface of the semiconductor substrate or the semiconductor layer via ion implantation of a first conductive dopant through the barrier film, and removing the barrier film.
Abstract:
A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type on the substrate; a first electrode electrically connected to the emitter layer; a passivation layer on the substrate; a second electrode conductive layer on the passivation layer, the second electrode conductive layer including at least one second electrode electrically connected to the substrate through the passivation layer; and a second electrode current collector electrically connected to the second electrode conductive layer.