Abstract:
A method of generating reference signals by a base station in a wireless communication system is disclosed. The method including a sequence of a first reference signal using a cell identifier of the base station, transmitting, to a first user equipment (UE), a message including mode information indicating a first mode for a coordinated multi-point (CoMP) operation and a predetermined identifier being different from the cell identifier of the base station and generating a sequence of a second reference signal for the first UE using the predetermined identifier instead of the cell identifier of the base station.
Abstract:
This is provided a method for allocating pilots to a sub-frame. The sub-frame includes a plurality of blocks in time domain. The method includes allocating a data demodulation (DM) pilot used for demodulating data to two blocks spaced not contiguous with each other, and allocating a channel quality (CQ) pilot. System capacity can be increased, and degradation of performance incurred by a channel estimation error can be minimized.
Abstract:
Provided are a method and an apparatus for determining transmission power of a preamble in a wireless communication system. A terminal estimates secondary cell (SCell) path loss with respect to a downlink (DL) component carrier (CC), which is in a linkage relationship with an uplink (UL) component carrier inside the SCell; decides the transmission power of a physical random access channel (PRACH) preamble based on the SCell path loss that is estimated; and transmits the PRACH preamble to a base station through the UL CC inside the SCell, based on the transmission power that is decided, wherein the SCell and a primary cell (PCell) comprises a carrier aggregation (CA) system, the PCell is a cell from which the terminal performs radio resource control (RRC) connection with the base station, and wherein the Scell is at least one cell from residual cells in the carrier aggregation excluding the PCell.
Abstract:
The present invention relates to a wireless communication system which supports carrier aggregation. More particularly, the present invention relates to a method and to an apparatus for enabling a user equipment to perform a handover in a wireless communication system which supports carrier aggregation. The method for performing a handover comprises the steps of: transmitting a measurement report on a target cell to a serving cell; receiving, from the serving cell, a message containing a signature route sequence index, cyclic shift parameters, and information related to the component carrier of the target cell; confirming contention-based signatures generated on the basis of the signature route sequence index and cyclic shift parameters; and transmitting one of said contention-based signatures to the target cell for random access, via one or more component carriers, on the basis of said information related to the component carrier. The present invention also relates to an apparatus for the method.
Abstract:
The present invention relates a method in which a base station transmits a downlink signal by using a plurality of layers comprises the steps of: multiplexing and transmitting dedicated reference signals for the plurality of layers on the basis of a reference signal pattern, wherein 24 resource element positions comprised in the reference signal pattern are set as 6 groups, the 6 groups are set as 2 high-level groups, the reference signal for the plurality of layer is split and placed in the 2 high-level groups, and the reference signal for 2 or more layers placed in the same group is subjected to code-division multiplexing.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
The present invention provides a method and apparatus for transmitting uplink control information (UCI) with user equipment in a wireless communication system. The user equipment performs channel coding on information bits of UCI to generate encoded information bits; modulates the generated encoded information bits to generate complex modulation symbols; spreads the complex modulation symbols blockwise into a plurality of single carrier frequency division multiple access (SC-FDMA) symbols on the basis of an orthogonal sequence; and transmits the spread complex modulation symbols to a base station.
Abstract:
A method for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) for a physical uplink shared channel (PUSCH) in a wireless communication system, can include generating a plurality of P DMRS sequences associated with a plurality of P layers respectively, wherein a plurality of P cyclic shifts are allocated to the P DMRS sequences respectively, mapping the plurality of P DMRS sequences to resource elements (REs), and transmitting the plurality of P DMRS sequences to a base station, wherein the plurality of P cyclic shifts are determined based on first and second values, which are indicated by a cyclic shift field in downlink control information (DCI), received through a physical downlink control channel (PDCCH).
Abstract:
A method of generating a code sequence and method of adding additional information using the same are disclosed, by which a code sequence usable for a channel for synchronization is generated and by which a synchronization channel is established using the generated sequence. The present invention, in which the additional information is added to a cell common sequence for time synchronization and frequency synchronization, includes the steps of generating the sequence repeated in time domain as many as a specific count, masking the sequence using a code corresponding to the additional information to be added, and transmitting a signal including the masked sequence to a receiving end.