摘要:
A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors comprises a source, a drain, and a gate. A trench silicide layer electrically connects one of the source or the drain of the first transistor to one of the source or the drain of the second transistor.
摘要:
A semiconductor device includes a substrate with first and second transistors disposed thereon and including sources, drains, and gates, wherein the first and second gates extend longitudinally as part of linear strips that are parallel to and spaced apart. The device further includes a first CB layer forming a local interconnect electrically connected to the first gate, a second CB layer forming a local interconnect electrically connected to the second gate, and a CA layer forming a local interconnect extending longitudinally between first and second ends of the CA layer. The first and second CB layers and the CA layer are disposed between a first metal layer and the substrate. The first metal layer is disposed above each source, drain, and gate of the transistors, The CA layer extends parallel to the first and second linear strips and is substantially perpendicular to the first and second CB layers.
摘要:
An approach for providing SRAM bit cells with double patterned metal layer structures is disclosed. Embodiments include: providing, via a first patterning process, a word line structure, a ground line structure, a power line structure, or a combination thereof; and providing, via a second patterning process, a bit line structure proximate the word line structure, the ground line structure, the power line structure, or a combination thereof. Embodiments include: providing a first landing pad as the word line structure, and a second landing pad as the ground line structure; and providing the first landing pad to have a first tip edge and a first side edge, and the second landing pad to have a second tip edge and a second side edge, wherein the first side edge faces the second side edge.
摘要:
An approach for providing cross-coupling-based designs using diffusion contact structures is disclosed. Embodiments include providing first and second gate structures over a substrate; providing a first gate cut region across the first gate structure, and a second gate cut region across the second gate structure; providing a first gate contact over the first gate structure, and a second gate contact over the second gate structure; and providing a diffusion contact structure between the first and second gate cut regions to couple the first gate contact to the second gate contact.
摘要:
A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors comprises a source, a drain, and a gate. A trench silicide layer electrically connects one of the source or the drain of the first transistor to one of the source or the drain of the second transistor.
摘要:
One illustrative device disclosed herein includes a continuous active region defined in a semiconducting substrate, first and second transistors formed in and above the continuous active region, each of the first and second transistors comprising a plurality of doped regions formed in the continuous active region, a conductive isolating electrode positioned above the continuous active region between the first and second transistors and a power rail conductively coupled to the conductive isolating electrode.
摘要:
A flip-flop (10) comprises a first latch circuit (18), a second latch circuit (24), and a third latch circuit (26). The first latch circuit (18) is coupled to receive a clock signal and a first power supply voltage. The second latch circuit (24) is coupled to the first latch circuit (18) and receives the clock signal and the first power supply voltage. Preparatory to entering a low power mode, the third latch circuit (26) receives a second power supply voltage and is coupled to the second latch circuit (24) in response to a power down signal. During the low power mode, the first power supply voltage is removed from the first and second latch circuits (18, 24). When returning to a normal operating mode, the first power supply voltage is provided to the first and second latch circuits (18, 24), and the third latch circuit (26) is coupled to the first latch circuit (18) in response to a power restore signal.
摘要:
A well-bias system dynamically adjusts well-bias set points to optimal levels across an integrated circuit (IC) for enhanced power savings and component reliability during a standby or low-power mode of operation. A controller within the IC determines if the chip power supply voltage will be reduced during an imminent standby or low power mode and sets a register controlling a negative well-bias set point for asserting well-bias to charge wells of the IC accordingly. To minimize leakage current without compromising reliability, the well-bias set point is set to (1) an optimal well-bias set point if a reduced supply voltage is to be applied to the IC, or (2) a minimum well-bias set point when a nominal or high supply voltage is to be applied to the IC.