摘要:
A heat sink, and cooled electronic structure and cooled electronic apparatus utilizing the heat sink, are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels and one or more vapor-condensing channels. A membrane is disposed between the coolant-carrying channel(s) and the vapor-condensing channel(s). The membrane includes at least one vapor-permeable region, at least a portion of which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s) to the vapor-condensing channel(s). The heat sink further includes one or more coolant inlets coupled to provide a first liquid coolant flow to the coolant-carrying channel(s), and a second liquid coolant flow to condense vapor within the vapor-condensing channel(s).
摘要:
A cooling apparatus and method are provided for cooling an electronic subsystem of an electronics rack. The cooling apparatus includes a local cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronic subsystem of the rack, and includes either a housing facilitating immersion cooling of electronic components of the electronic subsystem, or one or more liquid-cooled structures providing conductive cooling to the electronic components of the electronic subsystem. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger of the local cooling station. In operation, heat is transferred via circulating coolant from the electronic subsystem and rejected in the liquid-to-air heat exchanger of the local cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
摘要:
Apparatus and method are provided for cooling an electronic component. The apparatus includes a refrigerant evaporator in thermal communication with the component(s) to be cooled, and a refrigerant loop coupled in fluid communication with the evaporator for facilitating flow of refrigerant through the evaporator. The apparatus further includes a compressor in fluid communication with the refrigerant loop, a refrigerant bypass pipe coupled to the refrigerant loop in parallel fluid communication with the evaporator, and a control valve for controlling refrigerant flow through the evaporator. The control valve is controlled to maintain temperature of the component(s) within a specified temperature range. The apparatus further includes a controllable refrigerant heater associated with the refrigerant bypass pipe for providing an adjustable heat load on refrigerant in the bypass pipe to ensure that refrigerant entering the compressor is in a superheated thermodynamic state.
摘要:
Apparatus and method are provided for cooling an electronic component(s). The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger in fluid communication with the coolant-cooled structure via a coolant loop. A thermal buffer unit is coupled in fluid communication with the coolant loop, and a refrigerant loop is coupled in fluid communication with the heat exchanger. The heat exchanger dissipates heat from coolant in the coolant loop to refrigerant in the refrigerant loop. A compressor is coupled in fluid communication with the refrigerant loop and is maintained ON responsive to heat load of the component(s) exceeding a heat load threshold, and is cycled ON and OFF responsive to heat load of the component(s) being below the threshold. The thermal storage unit dampens swings in coolant temperature within the coolant loop during cycling ON and OFF of the compressor.
摘要:
A heat exchange assembly and apparatus and method employing the heat exchange assembly are provided. The heat exchange assembly includes a coolant-to-refrigerant heat exchanger and a heater. The heat exchanger includes a coolant inlet and a coolant outlet for passing a coolant through the heat exchanger, and a refrigerant inlet and a refrigerant outlet for separately passing a refrigerant through the heat exchanger. The heat exchanger cools coolant passing through the heat exchanger by dissipating heat from coolant passing through the heat exchanger to refrigerant passing through the heat exchanger. The heater is integrated with the heat exchanger and applies an auxiliary heat load to refrigerant passing through the heat exchanger to facilitate ensuring that refrigerant passing through the heat exchanger absorbs at least a specified minimum heat load, for example, to ensure that refrigerant egressing from the refrigerant outlet of the heat exchanger is superheated vapor refrigerant.
摘要:
Liquid-cooled electronics racks are provided which include: immersion-cooled electronic subsystems; a vertically-oriented, vapor-condensing unit facilitating condensing dielectric fluid vapor egressing from the immersion-cooled subsystems, the vertically-oriented, vapor-condensing unit being sized and configured to reside adjacent to at least one side of the electronics rack; a reservoir for holding dielectric fluid, the reservoir receiving dielectric fluid condensate from the vertically-oriented, vapor-condensing unit; a dielectric fluid supply manifold coupling in fluid communication the reservoir and the dielectric fluid inlets of the immersion-cooled electronic subsystems; and a pump associated with a reservoir for pumping under pressure dielectric fluid from the reservoir to the dielectric fluid supply manifold for maintaining dielectric fluid in a liquid state within the immersion-cooled electronic subsystems.
摘要:
Cooling apparatus and method are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatus includes a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment so that the electronic subsystem is immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment. The condenser fins facilitate cooling and condensing of dielectric fluid vapor generated within the sealed compartment. Within the sealed compartment, multiple thermally conductive condenser fins are interleaved with multiple electronic components immersed within the dielectric fluid to facilitate localized cooling and condensing of dielectric fluid vapor between the multiple electronic components.
摘要:
Liquid-cooled electronics apparatuses and methods are provided. The cooled electronics apparatuses include a liquid-cooled cold rail and an electronics subassembly. The liquid-cooled cold rail has a thermally conductive structure and a coolant-carrying channel extending within and cooling the thermally conductive structure. The electronics subassembly includes an electronics card(s) and one or more thermal transfer plates. The electronics card(s) includes electronic devices to be cooled, and the one or more thermal transfer plates are each rigidly affixed to one or more electronic devices of the electronics card(s). Each thermal transfer plate is thermally conductive and couples the electronics subassembly to the liquid-cooled cold rail to thermally interface the one or more electronic devices to the liquid-cooled cold rail to facilitate cooling of the electronic devices. In one embodiment, the electronics subassembly includes multiple interleaved electronics cards and thermal transfer plates.
摘要:
Vapor condensers and cooling apparatuses are provided which facilitate vapor condensation cooling of a coolant employed in cooling an electronic device. The vapor condenser includes a thermally conductive base structure with a plurality of condenser fins extending from the base structure. The condenser fins have a proximal end coupled to the base structure and a remote end remote from the base structure. At least one exposed cavity is provided within each condenser fin extending from the remote end towards the proximal end. The exposed cavities are sized to provide greater condenser fin surface area for facilitating vapor condensate formation, and thereby facilitate cooling of an electronic device using a two-phase coolant.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating cooling of an electronic device. The cooling apparatus includes a thermally conductive porous material and a liquid coolant supply. The thermally conductive porous material (such as metal foam material) is coupled to a surface of the electronic device to be cooled, or a structure coupled to the electronic device. The liquid coolant supply includes a jet impingement structure, which includes one or more jet nozzles for directing liquid coolant onto the surface to be cooled. The jet nozzle(s) extends into the thermally conductive porous material, and facilitates delivery of liquid coolant onto the surface to be cooled. The thermally conductive porous material is in thermal contact with the surface to be cooled and facilitates cooling of the electronic device by boiling of the liquid coolant passing through the porous material.