摘要:
A digital video system (2) is disclosed, in which an analog input video signal is sampled at an optimum sample phase (Pnc), and converted to a digital datastream for display. A phase-locked loop (12) generates a plurality of sample clock phases. One of the sample clock phases (Pnc) is applied to an analog-to-digital converter (10), which digitizes the analog input video signal accordingly. Phase alignment circuitry (20) is provided that includes three sample-and-hold circuits (22b, 22c, 22a) that sample the analog input video signal, in parallel with the analog-to-digital converter (10), at times before, at, and after the current sample clock phase used by the analog-to-digital converter (10). The earlier and later sampled voltages are compared against the current sampled voltages to generate difference voltages that are each compared against a threshold voltage (Vthr). The numbers of times that the difference voltages exceed the threshold voltage over a field or frame is analyzed according to various techniques, to determine whether and in which direction to adjust the position of the current sample clock phase within the pixel period.
摘要:
An apparatus employing control words to present a synthesized output signal having an output frequency and a delay with respect to an input signal includes: (a) A multiplexer receiving the input signal and having an output and an address input. (b) An output unit generates the output signal in response to a drive signal from the multiplexer. (c) A first register coupled with the multiplexer output. (d) A second register coupled with the multiplexer and the first register. The first register responds to a multiplexer output signal to provide a first control signal to the second register based upon the control words. The second register responds to the multiplexer output signal to provide a second control signal to the address input based upon the first control signal and the control words. The multiplexer presents the drive signal in response to the second control signal.
摘要:
A method and apparatus for a digital video display. A digital display device receives an analog signal representing an image formed of pixels in video lines and a signal containing a synchronization waveform for the image. An analog-to-digital converter (ADC) receives the analog signal and converts it to a sampled digital waveform. A phase-locked loop including a programmable frequency divider controls the sampling time for the ADC. The programmable frequency divider is controlled by a dividing-ratio algorithm that selects a dividing ratio, measures the number of pixels in a video line using the dividing ratio, and recomputes the dividing ratio by multiplying the selected dividing ratio by the expected number of pixels in a video line and dividing by the measured number of pixels. The sampling phase for the ADC is selected by a sampling-phase control algorithm that minimizes a function representative of the flatness of the sampled digital waveform.
摘要:
A clock data recovery circuit includes a binary phase detector configured to receive an incoming data signal and a recovered clock, and output a phase offset signal and recovered data; a digital loop control circuit configured to receive the phase offset signal and output a control signal; and a digital frequency generator configured to receive the control signal and output the recovered clock. A method of clock recovery includes generating a digital phase offset signal from incoming data and feedback clock signals; generating a clock frequency control signal from the phase offset signal; generating a recovered clock in response to the control signal; slowing down the recovered clock when the digital phase offset signal has a first binary state; speeding up the recovered clock when the digital phase offset signal has a second binary state; and holding the recovered clock when the digital phase offset signal has a third binary state.
摘要:
An open loop clock divider circuit includes (a) a first divider configured to receive an incoming clock signal and output a first divided clock signal, (b) a flying-adder synthesizer configured to fractionally divide the first divided clock signal and output a fractionally divided clock signal, and (c) a second divider configured to receive the fractionally divided clock signal and output a second divided clock signal. The open loop clock divider circuit advantageously provides a fractional divider in which there is no feedback loop between the source frequency (fs) and the destination frequency (fd). Methods of generating a divided clock signal involving the open loop clock divider circuit are also disclosed.
摘要:
A method for reducing jitter in an output signal from a frequency synthesizer using a control word having a fractional bit includes dividing the output signal by a predetermined divisor to present a modified output signal substantially free of jitter.
摘要:
A clock synthesis circuit (22) including a phase-locked loop (25) and one or more frequency synthesis circuits (27; 77; 227; 237) is disclosed. A disclosed implementation of the phase-locked loop (25) includes a voltage-controlled oscillator (30) having an even number of differential stages (31) to produce an even number of equally spaced clock phases. In one arrangement, the frequency synthesis circuit (27) includes two adder legs that generate select signals applied to first and second multiplexers (40a, 40b), for selecting among the clock phases from the voltage-controlled oscillator (30). The outputs of the first and second multiplexers (40a, 40b) are applied to a two-to-one multiplexer (46) which is controlled by the output clock signal (CLK1), to drive clock edges to a T flip-flop (48) to produce the output clock signals (CLK1, CLK2). In another embodiment, more than two adder and register units (55) control corresponding multiplexers (56) for selecting clock phases from the voltage-controlled oscillator (30) for application to an output multiplexer (58), which is controlled by a clock control circuit (60) to apply the selected clock phases to the T flip-flop (62). In another embodiment, primary and phase-shifted frequency synthesis circuits (227, 327) receive initialization values (INIT1, INIT2) that establish the phase differential and ensure proper initialization.
摘要:
A video decoder (52, 152) including a digital-control oscillator (DCO) (60, 160) is disclosed. The DCO (60, 160) includes a first flying-adder frequency synthesis circuit (74S) that measures an input signal frequency, such as the horizontal sync frequency of an input video signal. A frequency control word (FREQ) is generated in response to this input signal frequency, and is applied to a second flying-adder frequency synthesis circuit (74), which in turn selects the appropriate phases for leading and trailing edges of the output clock signal (PIX_CLK). Phase tuning of the output clock signal (PIX_CLK) can be effected by using an alternate flying-adder frequency synthesis circuit (74′) architecture, in combination with a phase signal (PH) generated by a digital controller (61). Multiple phase-tuned sample clocks (PIX_CLK_A, PIX_CLK_B, PIX_CLK_C) can be similarly generated from multiple flying-adder frequency synthesis circuits (174A, 174B, 174C), each controlled by the frequency control word (FREQ) and a corresponding phase signal (PHA, PHB, PHC). Video mode control logic (65, 165) can also be implemented by way of a similar DCO architecture. The DCO (60) may be used to generate a clock signal at a large frequency multiple relative to the input signal, outside of the video decoder context.
摘要:
A TAF-DPS based circuits and methods to improve electronic system's frequency accuracy and enhance its frequency stability is disclosed in this application. Present invention creates a circuit architecture and a calculation scheme for compensating frequency source's frequency error. Present invention further discloses a method of incorporating said scheme into functional chip built in either ASIC or FPGA fashion. Present invention further presents a method of using TAF-DPS-frequency-compensation-scheme-equipped-chips as nodes in electronic network. As a result, the circuit and apparatus disclosed in present invention can improve electronic system's performance from the time synchronization perspective.
摘要:
An adaptive clock generation circuit for synthesizing Time-Average-Frequency in dynamic fashion includes (a) a timing circuit for generating a base unit of fixed time span, (b) a control circuit that takes inputs from a microelectronic system wherein the control circuit and the clock generation circuit reside, for generating a update signal and a frequency control word, (c) a direct period synthesizer for generating a plurality of types of pulses by utilizing said base unit and the frequency control word, for creating a segment of a clock pulse train by connecting electrical pulses in series that are selected from said plurality of types according to the update signal, for creating the entire clock pulse train by connecting said segment in series. The resulting Time-Average-Frequency of the clock pulse train matches a selected frequency that is required by the operation of the microelectronic system wherein the clock generation circuit resides. A method of creating such adaptive clock generation circuit is also presented.