Abstract:
A wave-powered water vehicle includes a surface float, a submerged swimmer, and a tether which connects the float and the swimmer, so that the swimmer moves up and down as a result of wave motion. The swimmer includes one or more fins which interact with the water as the swimmer moves up and down, and generate forces which propel the vehicle forward. The vehicle, which need not be manned, can carry communication and control equipment so that it can follow a course directed by signals sent to it, and so that it can record or transmit data from sensors on the vehicle.
Abstract:
This disclosure provides improved nautical craft that can travel and navigate on their own. A hybrid vessel is described that converts wave motion to locomotive thrust by mechanical means, and also converts wave motion to electrical power for storage in a battery. The electrical power can then be tapped to provide locomotive power during periods where wave motion is inadequate and during deployment. The electrical power can also be tapped to even out the undulating thrust that is created when locomotion of the vessel is powered by wave motion alone.
Abstract:
A wave-powered water vehicle includes a surface float, a submerged swimmer, and a tether which connects the float and the swimmer, so that the swimmer moves up and down as a result of wave motion. The swimmer includes one or more fins which interact with the water as the swimmer moves up and down, and generate forces which propel the vehicle forward. The vehicle, which need not be manned, can carry communication and control equipment so that it can follow a course directed by signals sent to it, and so that it can record or transmit data from sensors on the vehicle.
Abstract:
An Endurance Extension Module (EXM) for powering an Unmanned Underwater Vehicle. The EXM converts wave motion to locomotive thrust, towing the UUV from point to point or keeping it in place against an opposing current. The EXM may also supply the UUV with electricity for driving an electric motor or powering on-board electronics. The EXM can be refracted onto the UUV when not in use to minimize drag, or it can release the UUV as prologue to a subsequent rendezvous. The EXM-UUV combinations of this invention allow extended autonomous missions over wider territory for purposes such as surveying, monitoring conditions, or delivering cargo.
Abstract:
Equipment and methods which combine the use of wave powered vehicles and unmanned aerial vehicles (UAVs or drones). A UAV can be launched from a wave-powered vehicle, observe another vessel and report the results of its observation to the wave-powered vehicle and the waves-powered vehicle can report the results of the observation to a remote location. The UAV can land on water and can then be recovered by the wave-powered vehicle.
Abstract:
A wave-powered water vehicle includes a surface float, a submerged swimmer, and a tether which connects the float and the swimmer, so that the swimmer moves up and down as a result of wave motion. The swimmer includes one or more fins which interact with the water as the swimmer moves up and down, and generate forces which propel the vehicle forward. The vehicle, which need not be manned, can carry communication and control equipment so that it can follow a course directed by signals sent to it, and so that it can record or transmit data from sensors on the vehicle.
Abstract:
A float (1) suitable for use as a buoy or as a component for a wave-powered vehicle. The float (1) includes an upper member (12) whose height can be changed and/or which remained substantially vertical even when the float is in wave-bearing water. A low drag cable (2) suitable for use as a tether in a wave-powered vehicle has a streamlined cross-section and includes a tensile member (21) near the front of the cross-section, at least one non-load-bearing member (22) behind the tensile member, and a polymeric jacket (23). Wave-powered vehicles having a float (1), a submerged swimmer (3) and a tether (2) connecting the float and the swimmer, include a means for determining whether the tether is twisted; or a means (91) for untwisting the tether; or a pressure-sensitive connection (71, 72, 73) which can disconnect the tether when the vehicle is dragged downwards by entanglement with a whale; or a 2-axis universal joint securing the tether to the float or to the swimmer; or elastic elements which absorb snap loads created by the tether; or two or more of these.
Abstract:
A float (1) suitable for use as a buoy or as a component for a wave-powered vehicle. The float (1) includes an upper member (12) whose height can be changed and/or which remained substantially vertical even when the float is in wave-bearing water. A low drag cable (2) suitable for use as a tether in a wave-powered vehicle has a streamlined cross-section and includes a tensile member (21) near the front of the cross-section, at least one non-load-bearing member (22) behind the tensile member, and a polymeric jacket (23). Wave-powered vehicles having a float (1), a submerged swimmer (3) and a tether (2) connecting the float and the swimmer, include a means for determining whether the tether is twisted; or a means (91) for untwisting the tether; or a pressure-sensitive connection (71, 72, 73) which can disconnect the tether when the vehicle is dragged downwards by entanglement with a whale; or a 2-axis universal joint securing the tether to the float or to the swimmer; or elastic elements which absorb snap loads created by the tether; or two or more of these.
Abstract:
This disclosure provides improved nautical craft that can travel and navigate on their own. A hybrid vessel is described that converts wave motion to locomotive thrust by mechanical means, and also converts wave motion to electrical power for storage in a battery. The electrical power can then be tapped to provide locomotive power during periods where wave motion is inadequate and during deployment. The electrical power can also be tapped to even out the undulating thrust that is created when locomotion of the vessel is powered by wave motion alone.
Abstract:
A float (1) suitable for use as a buoy or as a component for a wave-powered vehicle. The float (1) includes an upper member (12) whose height can be changed and/or which remained substantially vertical even when the float is in wave-bearing water. A low drag cable (2) suitable for use as a tether in a wave-powered vehicle has a streamlined cross-section and includes a tensile member (21) near the front of the cross-section, at least one non-load-bearing member (22) behind the tensile member, and a polymeric jacket (23). Wave-powered vehicles having a float (1), a submerged swimmer (3) and a tether (2) connecting the float and the swimmer, include a means for determining whether the tether is twisted; or a means (91) for untwisting the tether; or a pressure-sensitive connection (71, 72, 73) which can disconnect the tether when the vehicle is dragged downwards by entanglement with a whale; or a 2-axis universal joint securing the tether to the float or to the swimmer; or elastic elements which absorb snap loads created by the tether; or two or more of these.