Abstract:
A roller is provided for use in coating machines. The roller directly or indirectly applies a liquid or pasty medium to one or both sides of a running web of material, especially one made of paper or paperboard. The roller includes a core whose outer casing is provided with a covering made of an elastomeric material. The covering is designed such that it can be compressed.
Abstract:
The invention is directed to a method for the application of a liquid or pasty medium onto a traveling fiber material web. The medium is directly applied on at least one side of the traveling material web. The medium is pressed into the traveling material web after the medium is directly applied on the traveling material web.
Abstract:
The invention relates to a method for directly or indirectly applying a liquid or pasty application medium (2) onto one or both sides of a continuous surface (4), wherein the application medium (2) is applied to the surface (4) in a plurality of single application regions by means of a plurality of single application nozzles (12) spaced apart from one another side by side and/or in succession in the direction of width (B) and/or longitudinal direction of the surface (4) and clearly distanced (D) from the surface (4), the application medium (2) emerging from each of these nozzles, wherein adjacent single application regions each intersect (U) at least in part in their respective edge regions, causing a layer of application medium to be produced across substantially the entire width (B) of the surface (4) to be coated. The invention also relates to an apparatus for performing this method.
Abstract:
A device to actively reduce undesirable vibrations in a rotating roll includes at least one sensor arrangement to detect/measure the undesirable vibrations and at least one power unit device which, dependent upon the detecting/measuring result, influences the roll to reduce the undesirable vibration. The sensor arrangement includes at least one sensor which, relative to the rotational axis of the roll, is located radially inside the substantially circular cylindrical outer surface of the roll and/or at least one sensor which is located remotely from the substantially circular cylindrical outer surface of the roll.
Abstract:
A support bar unit for supporting at least one functional device in a machine for the production and/or the processing of a fiber material web includes a first partial support beam and a second partial support beam. The first partial support beam supports the functional device, while the first partial support beam is supported on the second partial support beam. Further, the first partial support beam surrounds the second partial support beam, at least sectionally.
Abstract:
The invention is directed to a method for the application of a liquid or pasty medium onto a traveling fiber material web. The medium is directly applied on at least one side of the traveling material web. The medium is pressed into the traveling material web after the medium is directly applied on the traveling material web.
Abstract:
The invention is directed to a method and device for the production of a paper web featuring a CF coating. The paper web passes through a nip (a) formed by a coating roll (2) and a backing roll (1). CF coating is applied on coating roll (2), dosed there by means of a dosing device (11) and transferred to paper web (3) in the nip, with the two rolls (1, 2) being compressed at a line force of maximally 10 kN/m.
Abstract:
A method for at least one-sided coating of a material web with an application medium is performed by a two-element applicator device having at least one applicator roll and a counter element defining a gap through which the material web is conveyed. The method includes the steps of pre-metering the application medium onto the applicator roll and transferring the application medium onto the material web in the gap. Pre-metering of the application medium to the applicator device is performed by at least one free jet.
Abstract:
An application unit for applying a liquid or pasty medium onto a surface moving past the application unit. This has particular application to direct or indirect application of such a medium to a paper or board web. A support beam and a front wall supported generally further from and a rear wall supported generally closer to the moving surface. The walls are spaced apart for defining a pasty medium supply gap between them and are oriented so that the supply gap generally directs the medium toward the surface. The front and rear walls can selectively receive releasable attachment of members for forming a liquid medium an application chamber, the chamber having a downstream end with a blade, an upstream end with a damming strip over which the excessive medium in the application chamber can overflow. Alternatively, a second set of attachable members may be attached to the walls for forming a free jet nozzle dosing gap that communicates with the supply gap for directing the medium to the surface. Therefore, the basic structural group remains unchanged and selectively it may be modified to either an application chamber or a free jet nozzle dosing gap. In an alternate embodiment, the elements defining the dosing gap themselves can receive the attachable elements for defining the application chamber. This enables rearranging the application unit either to define an application chamber or a free jet nozzle with replacement of fewer parts, and generally the parts that are toward the surface.
Abstract:
A device for predosing coating composition on a traveling web of paper. A guide member extends obliquely toward the web. Downstream in the path of the web past the guide member, a doctor element is supported spaced from the tip of the guide member for defining a pressure space between the a guide member and the doctor element. Coating composition is fed through a feed channel between the guide member, on the one hand, and the doctor element and the supports for the doctor element up to the pressure space, on the other hand. An exit slot from the pressure space between the guide member and the web is defined at the tip of the guide member. The guide member has a guide surface down from the tip of the guide member, on the side of the guide member away from the doctor element which faces generally toward the web. The guide surface defines a return channel for coating composition that has moved out of the pressure space and through the slot. The guide surface is gradually inclined so that the return channel gradually enlarges away from the tip of the guide member and the return channel serves as a pressure reduction space for the excess coating composition. The doctor element may be in the form of a doctor bar or a coating blade with an angle of application against the web of at most 20.degree..