摘要:
An optical circuit comprises: a first waveguide; a second waveguide: and a third waveguide that converts mode field and direction of polarization of light of said first waveguide at the same time to perform wave guiding to said second waveguide: wherein large aspect ratio directions of corresponding ends of a core of said first waveguide and a core of said second waveguide differ from each other.
摘要:
A coupling structure of waveguide including a line defect (LD) waveguide portion having an LD waveguide, an electromagnetic field distribution matching portion (EFDMP) connected between the LD waveguide portion and a first tapered portion, the first tapered portion connected with the EFDMP, and a thin line waveguide portion connected with the first tapered portion and having a thin line waveguide. The EFDMP has a matching portion LD as the LD of a columnar photonic crystal, and the matching portion LD is connected with the LD waveguide. The first tapered portion consists of a first thin wire core, and the first LD of a columnar photonic crystal arranged along at least one side of first thin line core. At least one of the first thin line core and the first LD is connected with the matching portion line defect. The thin line waveguide is connected with the first thin line core.
摘要:
An optical circuit comprises a first waveguide; a second waveguide; and a third waveguide that converts mode field and direction of polarization of light of said first waveguide at the same time to perform wave guiding to said second waveguide; wherein large aspect ratio directions of corresponding ends of a core of said first waveguide and a core of said second waveguide differ from each other.
摘要:
A microchip includes a clad layer having a channel through which a sample flows, and an optical waveguide formed within the clad layer and having a higher refractive index than the clad layer. The optical waveguide is formed to act on the channel optically. Thus, the sample flowing in the channel can be analyzed with high accuracy even in the microchip having a fine structure.
摘要:
A method for forming an electrode on a mesa structure of a semiconductor substrate. The method comprises the steps of: selectively forming an electrode on a predetermined area in a surface of the semiconductor substrate; and subjecting the substrate to a selective etching by use of the electrode as a mask to form a mesa structure on the substrate so that the mesa structure is self-aligned just under the electrode.
摘要:
In an exemplary embodiment, an optical waveguide (10) includes a first dielectric medium (11). In the first dielectric medium (11), line-defect rods (12) are arranged in one row and non-line-defect rods (13) are arranged along the row of line-defect rods (12) and on both sides of the row of the line-defect rods (12). The line-defect rods (12) and non-line-defect rods (13) form a two-dimensional square lattice. Of the rows of non-line-defect rods (13) arranged on the two sides of the row of line-defect rods (12), the number of rows of non-line-defect rods (13) on at least one side is at least one and no greater than five.
摘要:
A coupling structure of waveguide including a line defect (LD) waveguide portion having an LD waveguide, an electromagnetic field distribution matching portion (EFDMP) connected between the LD waveguide portion and a first tapered portion, the first tapered portion connected with the EFDMP, and a thin line waveguide portion connected with the first tapered portion and having a thin line waveguide. The EFDMP has a matching portion LD as the LD of a columnar photonic crystal, and the matching portion LD is connected with the LD waveguide. The first tapered portion consists of a first thin wire core, and the first LD of a columnar photonic crystal arranged along at least one side of first thin line core. At least one of the first thin line core and the first LD is connected with the matching portion line defect. The thin line waveguide is connected with the first thin line core.
摘要:
A waveguide stub is connected to a pillar-type square-lattice photonic crystal waveguide. Within the waveguide stub, the diameter of a defect is made larger than that of the original photonic crystal waveguide thereby reducing the group velocity of a guided light. The original waveguide and the waveguide stub are smoothly connected via a taper waveguide. Because of low group velocity of light in the waveguide stub, free spectral range (FSR) decreases thereby allowing the size of the waveguide stub to be reduced.
摘要:
Disclose is a photonic crystal structure comprises atomic dielectric pillars having a refractive index distribution and a structure which are both mirror-symmetrical in a thicknesswise direction of the photonic crystal. The atomic pillars are arrayed in a two-dimensional lattice pattern to form a dielectric pillar lattice. The dielectric pillar lattice is disposed within a surrounding dielectric having a uniform or substantially uniform refractive index distribution. An organic resin which serves as part of surrounding dielectric is disposed in an asymmetrical position in a thicknesswise direction of the photonic crystal.
摘要:
The present invention provides an optical switch having a photonic crystal structure. An optical switch of the invention has a slab optical waveguide structure whose core (35) has a two-dimensional photonic crystal structure where two or more media (33, 34) with different refractive indices are alternately and regularly arranged in a two-dimensional manner. The photonic crystal structure comprises: a line-defect waveguide; and means for altering the refractive index of the line-defect waveguide.