Abstract:
A method for detecting an attack in an electronic microcircuit comprises: forming the microcircuit in a substrate, forming in the substrate a first well electrically isolated from the substrate, by a second well and an embedded well, forming in the first and second wells a data processing circuit comprising a ground terminal formed in the first well and a power supply terminal formed in the second well, and activating a detection signal when a voltage at the ground or power supply terminal of the data processing circuit crosses a threshold voltage.
Abstract:
The disclosure relates to a method for detecting an attack in an electronic microcircuit, comprising: forming the microcircuit in a substrate, forming in the substrate a first well electrically isolated from the substrate, by a second well and an embedded well, forming in the first and second wells a data processing circuit comprising a ground terminal formed in the first well and a power supply terminal formed in the second well, and activating a detection signal when a voltage at the ground or power supply terminal of the data processing circuit crosses a threshold voltage.
Abstract:
An integrated circuit includes non-volatile storage configured to secretly store a digital word, the value of which forms an identification code. The integrated circuit also includes control circuitry configured to receive the digital word and to generate transient electrical currents or transient voltages, the characteristics of which depend on the value of the digital word. There is an electrically conductive network configured to be passed through by the electrical currents or receive the transient voltages so as to generate an electromagnetic field that identifies the integrated circuit.
Abstract:
The component comprises a first memory (MM) comprising a first portion (P1) having a content modified with a first modification entity (K1) and a second portion (P2) having a content modified with a second entity (K2), a storage means (MS) configured to store the first entity (K1) secretly, a non-volatile memory (NVM) storing an item of entity information representative of the second entity (K2) in a location (END) designated by a first indication (INDK2) contained in the said first portion of the first memory.
Abstract:
An integrated circuit including a substrate of a semiconductor material having first and second opposite surfaces and including active areas leveling the first surface. The integrated circuit includes a device of protection against laser attacks, the protection device includes at least one first doped region extending between at least part of the active areas and the second surface, a device for biasing the first region, and a device for detecting an increase in the current provided by the biasing device.
Abstract:
A method processes parallel electrical signals, using parallel processing circuits that process successive cycles of electrical signals according to a rule for allocating electrical signals to the processing circuits. The method comprises, between the processing cycles, a step of modifying the rule for allocating electrical signals to the processing circuits, so that a processing circuit processes electrical signals of different ranks during different processing cycles. The method can be applied particularly to secure a memory during read phases of the memory and of an integrated circuit with a microprocessor using such a memory.
Abstract:
An integrated circuit including a substrate of a semiconductor material having first and second opposite surfaces and including active areas leveling the first surface. The integrated circuit includes a device of protection against laser attacks, the protection device includes at least one first doped region extending between at least part of the active areas and the second surface, a device for biasing the first region, and a device for detecting an increase in the current provided by the biasing device.
Abstract:
A memory comprises memory cells arranged in a memory array, and an address decoder to apply memory cells selection signals to the memory array according to a read address applied to the memory. The memory comprises an address reconstruction circuit which reconstructs at least one part of the read address from the memory cells selection signals, and supplies a first reconstructed address able to detect an error injection affecting the selection signals. Particularly but not exclusively applicable to the integrated circuits for chip cards.
Abstract:
The access to memory words of an integrated circuit is protected by the creation of a decision table that receives addresses of instruction words and/or data words to be protected and that receives also addresses of the control bits of a control word assigned to a word to be protected. It can be shown that this mode of action provides greater security through the use of a decision table made in wired circuit form as well as greater flexibility through the programmable quality of the control words assigned to each memory word to be controlled.
Abstract:
A Zener diode is used to simplify a circuit for detecting the level of an operating voltage with respect to a specified range of use. The semiconductor junction of this Zener diode is biased alternately by one voltage or another. Under these conditions, the avalanche voltage of this Zener diode changes. The operating voltage to be monitored is connected to the cathode of this Zener diode. If the monitored operating voltage is higher than the avalanche voltage of this Zener diode, the diode alternately conducts. If the operating voltage is outside this range, this diode is either permanently on or permanently off. The variations that result therefrom are detected to report whether the operating voltage is correct.