摘要:
Method for making poly(propylene fumarate) (PPF) polymer made by ring-opening polymerization of propylene oxide and maleic anhydride in the presence of magnesium ethoxide initiator, wherein PPF is specifically designed for us in 3D manufacturing of medical devices. PPF polymers have a number average molecular weight (Mn) of from about 450 Daltons to about 3400 Daltons; a molecular mass distribution (m) of from 1.0 to 2.0; and contains less than 1% w/w of poly(maleic anhydride-co-propylene oxide) polymer chains particularly. PPF polymers are non-toxic, degradable, and resorbable and can be used in tissue scaffolds and medical devices that are implanted within a living organism.
摘要:
Embodiments relate to amino acid-based poly(ester urea)s with amino acid residues selected L-leucine, L-isoleucine, L-valine or combinations thereof. The amino acid-based poly(ester urea)S may optionally include a second amino acid residue selected from proteinogenic amino acids and non-proteinogenic amino acids. The amino acid-based poly(ester urea)s are particular useful for the preparation of vascular grafts. Due to the biocompatibility of the amino acid-based poly(ester urea)s, vascular grafts prepared from amino acid-based poly(ester urea)s with small internal diameters (i.e. less than 5 mm) may be prepared and inserted into a patient or animal, and provide a substantial decrease in the risk of failure compared to conventional polymers used in vascular grafts.
摘要:
A method for creating a peptide crosslinked bioactive polymeric material includes reacting a hydroxy-functionalized small molecule with a amino acid to form an amino acid functionalized monomer, reacting the amino acid functionalized monomer with a urea bond former to form a amino acid-based poly(ester urea), and reacting the amino acid-based poly(ester urea) with a peptide based crosslinker to form the peptide crosslinked bioactive polymeric material.
摘要:
In at least one embodiment an apparatus is provided that includes an electromagnetic coupler probe to provide sampled electromagnetic signals and an electronics component to receive the sampled electromagnetic signals from the electromagnetic coupler probe and to provide recovered sampled electromagnetic signals. Other embodiments may be described and claimed.
摘要:
An asymmetric arbiter provides a fast signal path and a slow signal path. Signals may travel over the fast signal path in substantially less time than it takes for the signals to travel over the slow signal path. The fast signal path may be configured so as to impart only a minimal amount of delay. Signals that are to be frequently arbitrated by the arbiter may be applied to the fast signal path so as to minimize the delay introduced by the arbiter. The arbiter may include circuitry for detecting metastable conditions.
摘要:
In one or more embodiments, the present invention provides am method of making a poly(propylene fumarate-co-succinate) (PPFS) copolymer containing a random incorporation of succinate groups and targetable reduction profiles without the need for three or more monomer units. To achieve this, a time-dependent sonication-promoted zinc/acetic acid reduction of the PPM unsaturated double bonds has been used to create a random PPMS copolymer which may be isomerized into the PPFS equivalent. By changing the sonication time as well as the ratios of acetic acid, zinc, and PPM unsaturated alkenes, partial reduction of the PPM alkenes has been shown to give PPMS products containing varying compositions of succinic and maleate units, which may then be isomerized to the PPFS product.
摘要:
In one or more embodiments, the present invention provides am method of making a poly(propylene fumarate-co-succinate) (PPFS) copolymer containing a random incorporation of succinate groups and targetable reduction profiles without the need for three or more monomer units. To achieve this, a time-dependent sonication-promoted zinc/acetic acid reduction of the PPM unsaturated double bonds has been used to create a random PPMS copolymer which may be isomerized into the PPFS equivalent. By changing the sonication time as well as the ratios of acetic acid, zinc, and PPM unsaturated alkenes, partial reduction of the PPM alkenes has been shown to give PPMS products containing varying compositions of succinic and maleate units, which may then be isomerized to the PPFS product.
摘要:
An end and monomer functionalized poly(propylene fumarate) polymer and methods for preparing this polymer, comprising isomerized residue of a maleic anhydride monomer and a functionalized propylene oxide monomer according to the formula: where n is an integer from more than 1 to 100; R is the residue of an initiating alcohol having a propargyl, norbornene, ketone or benzyl functional group; and R′ is a second functional group selected from the group consisting of propargyl groups, 2-nitrophenyl groups, and combinations thereof are disclosed. The end and monomer functional groups allow for post-polymerization modification with bioactive materials using “click” chemistries and use of the polymer for a variety of applications in medical fields, including, for example, 3-D printed polymer scaffold.
摘要:
Amino acid-based poly(ester urea)s (PEU) are emerging as a class of polymers that have shown promise in regenerative medicine applications. Embodiments of the invention relate to the synthesis of PEUs carrying pendent “clickable” groups on modified tyrosine amino acids. The pendent species include alkyne, azide, alkene, tyrosine-phenol, and ketone groups. PEUs with Mw exceeding 100k Da were obtained via interfacial polycondensation methods and the concentration of pendent groups was varied by copolymerization. The incorporation of derivatizable functionalities is demonstrated using 1H NMR and UV-Vis spectroscopy methods. Electrospinning was used to fabricate PEU nanofibers with a diameters ranging from 350 nm to 500 nm. The nanofiber matricies possess mechanical strengths suitable for tissue engineering (Young's modulus: 300±45 MPa; tensile stress: 8.5±1.2 MPa). A series of bioactive peptides and fluorescent molecules were conjugated to the surface of the nanofibers following electrospinning using bio-orthogonal reactions in aqueous media.
摘要:
One or more embodiments of the present invention provide a hyperbranched amino-acid-based PEU polymer for use in regenerative medicine and/or drug delivery applications has tunable mechanical and thermal properties, but is sufficiently stable to permit such things as ethyloxide sterilization without degradation and/or significant loss of function. These hyperbranched amino acid-based poly(ester urea) (PEU) by interfacial polycondensation between linear and branched amino acid-based polyester monomers and a urea forming material such as trisphosgene or phosgene. By controlling the amount of branched monomer incorporated into the copolymer, the mechanical properties and water uptake abilities of the resulting hyperbranched amino acid-based PEUs may be tuned. The hyperbranched PEUs nanofibers are sterilizable with ETO and are stable for long periods of ETO sterilization, elevated temperature and exposure to aqueous environments. In various embodiments, these hyperbranched amino acid-based PEUs are also biodegradable and can be formed into fibers.