摘要:
An intrusion detection system for monitoring a premises includes at least one optical cable that houses at least one optical fiber and extends about the premises. Optical time domain reflectometry (OTDR) means is operably coupled to opposite first and second ends of the at least one optical fiber. The OTDR means includes first signal processing circuitry that analyzes the backscatter signal received via the first end of the at least one optical fiber in order to detect an intrusion of the premises, and second signal processing circuitry that analyzes the backscatter signal received via the second end of the at least one optical fiber in order to detect an intrusion of the premises. The redundancy of intrusions decisions made by the first and second signal processing circuitry can be verified. The system preferably further includes means for detecting a break in the at least one fiber, for identifying location of the break, for outputting to a user the location of the break, and for raising an alarm indicating the break.
摘要:
An optical time domain reflectometry (OTDR) system is configured to detect Rayleigh backscatter reflected from a multimode sensing optical fiber. The system includes a single spatial mode filtering system to select a single speckle of the Rayleigh backscatter produced in response to an optical pulse launched into the multimode fiber. The detected single speckle may be used for distributed disturbance (vibration) detection.
摘要:
The present invention comprises a system and methods to actuate downhole tools by transmitting an optical signal through an optical fiber to the downhole tool. The optical signal can comprise a specific optical signal frequency, signal, wavelength or intensity. The downhole tool can comprise packers, perforating guns, flow control valves, such as sleeve valves and ball valves, samplers, sensors, pumps, screens (such as to expand), chemical cutters, plugs, detonators, or nipples.
摘要:
An optical time domain reflectometry (OTDR) system is configured to detect Rayleigh backscatter reflected from a multimode sensing optical fiber. The system includes a single spatial mode filtering system to select a single speckle of the Rayleigh backscatter produced in response to an optical pulse launched into the multimode fiber. The detected single speckle may be used for distributed disturbance (vibration) detection.
摘要:
To perform distributed sensing with an optical fiber using Brillouin scattering, a light pulse is transmitted into the optical fiber, where the transmitted light pulse has a first frequency. Backscattered light and optical local oscillator light are combined, where the backscattered light is received from the optical fiber in response to the transmitted light pulse, and where the optical local oscillator light has a second frequency. A frequency offset is caused to be present between the first frequency of the transmitted light pulse and the second frequency of the optical local oscillator light, where the frequency offset is at least 1 GHz less than a Brillouin frequency shift of the backscattered light. Spectra representing Stokes and anti-Stokes components of the backscattered light are acquired, where the Stokes and anti-Stokes components are separated by a frequency span that is based on the frequency offset.
摘要:
To perform distributed sensing with an optical fiber using Brillouin scattering, a light pulse is transmitted into the optical fiber, where the transmitted light pulse has a first frequency. Backscattered light and optical local oscillator light are combined, where the backscattered light is received from the optical fiber in response to the transmitted light pulse, and where the optical local oscillator light has a second frequency. A frequency offset is caused to be present between the first frequency of the transmitted light pulse and the second frequency of the optical local oscillator light, where the frequency offset is at least 1 GHz less than a Brillouin frequency shift of the backscattered light. Spectra representing Stokes and anti-Stokes components of the backscattered light are acquired, where the Stokes and anti-Stokes components are separated by a frequency span that is based on the frequency offset.
摘要:
A method for measuring Brillouin backscattering from an optical fiber, comprising mixing backscattered light received from the optical fiber and having a Brillouin frequency fβ(t) with coherent light at a frequency f i in an optical detector to produce an electrical signal with a difference frequency ΔF(t)=fβ(t)−f15 and directly digitizing the electrical signal using an analog-to-digital converter to generate a sequence of samples representing the electrical signal, the samples then being processed to determine one or more properties of the Brillouin spectral line. The difference frequency may be further reduced by an additional frequency mixing stage to allow digitization at a lower sampling rate.
摘要:
An intrusion detection system for monitoring a premises includes at least one optical cable that houses at least one optical fiber and extends about the premises. Optical time domain reflectometry (OTDR) means is operably coupled to opposite first and second ends of the at least one optical fiber. The OTDR means includes first signal processing circuitry that analyzes the backscatter signal received via the first end of the at least one optical fiber in order to detect an intrusion of the premises, and second signal processing circuitry that analyzes the backscatter signal received via the second end of the at least one optical fiber in order to detect an intrusion of the premises. The redundancy of intrusions decisions made by the first and second signal processing circuitry can be verified. The system preferably further includes means for detecting a break in the at least one fiber, for identifying location of the break, for outputting to a user the location of the break, and for raising an alarm indicating the break.
摘要:
A seismic acquisition system includes a distributed optical sensor (having an optical fiber) and an interrogation subsystem configured to generate a light signal to emit into the optical fiber. The interrogation subsystem receives, from the distributed optical sensor, backscattered light responsive to the emitted light signal, wherein the backscattered light is affected by one or both of seismic signals reflected from a subterranean structure and noise. Output data corresponding to the backscattered light is provided to a processing subsystem to determine a characteristic of the subterranean structure.
摘要:
Fiber optic monitoring of dimensional changes within a subterranean formation includes deploying a fiber optic cable assembly in a wellbore and attaching the cable assembly to first and second attachment points on either side of the formation. A surface fiber optic measurement system measures changes in the optical path length between the attachment points of the fiber optic cable assembly. The changes in optical path length are directly indicative of dimensional changes within the formation.