摘要:
A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases γ/γ′ at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
摘要:
Heat-insulating layer systems must have a long service life of the heat-insulating layer in addition to a good heat-insulating property. A layer system including a sequence of layers specially matched to each other, the sequence including metallic connection layer, an inner ceramic layer, and an outer ceramic layer is provided.
摘要:
Known protective layers with a high Al and/or Cr content and additionally strengthened by Re form brittle phases which become more brittle during use under the influence of carbon. The protective layer according to the invention has the composition 0.5 to 2% rhenium, 24 to 26% cobalt, 15 to 21% chromium, 9 to 11.5% aluminum, 0.05 to 0.7% yttrium and/or at least one equivalent metal selected from the group consisting of scandium and the rare earth elements, 0 to 1% ruthenium, remainder cobalt and/or nickel and manufacturing-related impurities, and reveals scarcely any embrittlement caused by Cr/Re precipitates.
摘要:
A component with a substrate and a protective layer is provided. The protective layer consists of an intermediate NiCoCrAlY layer zone on or near the substrate and an outer layer zone arranged on the intermediate NiCoCrAlY layer zone, wherein the outer layer zone has the structure of the phase β-NiAl and comprises in a weight percentage:17%-23% Al, 6%-11% Co, and Ni balance.
摘要:
Disclosed is a protective layer having the composition 1.5% to 2.5% rhenium, 11% to 13% cobalt, 20% to 22% chrome, 10.5% to 11.5% aluminum, 0.3% to 0.5% yttrium and or at least one equivalent metal selected from the group comprising scandium and the rare earths and the remainder consists of nickel. Existing protective layers which have a high Al and/or Cr content and which are additionally reinforced by Re-forming brittle phases that, during use, additionally embrittle under the influence of carbon. The present invention hardly exhibits a brittleness by Cr/Re depositions.
摘要:
Components according to the prior art, to protect against corrosion, have a protective layer, a metal element (for example Al) of this protective layer forming a protective oxide layer. However, this metal element also diffuses into the substrate in an undesired way. The layer system according to the invention includes a metallic blocking layer which prevents this diffusion, the blocking layer including at least one phase of the PdAl2, Ta2Al, NbAl2 or Nb3Al type.
摘要:
An oxidation resistant component is disclosed comprising a substrate and a protective layer. The protective layer consists of an inner MCrAlY layer contiguous with the substrate and an outer layer consisting of at least Ni and Al and having a β-NiAl structure
摘要:
An oxidation resistant component is disclosed comprising a substrate and a protective layer. The protective layer consists of an inner MCrAlY layer contiguous with the substrate and an outer layer consisting of at least Ni and Al and having a β-NiAl structure
摘要:
Known protective layers having a high Cr content and additionally a silicon form brittle phases which additionally become brittle under the influence of carbon during use. The protective layer hereof has a composition 22% to 24% cobalt (Co), 10.5% to 11.5% aluminum (AI), 0.2% to 0.4% yttrium (Y) and/or at least one equivalent metal from the group comprising scandium and the rare earth elements, 14% to 16% chrome (Cr), optionally 0.3% to 0.9% tantalum, the remainder nickel (Ni).
摘要:
Known protective layers with a high Cr content and additionally silicon form brittle phases which additionally embrittle during use under the influence of carbon. A protective layer including the composition of from 24% to 26% cobalt, from 10% to 12% aluminium, from 0.2% to 0.5T yttrium, from 12% to 14% chromium, remainder nickel is provided.