Abstract:
Known protective layers having a high Cr-content and a silicone in addition, form brittle phases that embrittle further under the influence of carbon during use. The protective layer according to the invention is composed of 22% to 26% cobalt (Co), 10.5% to 12% aluminum (Al), 0.2% to 0.4% Yttrium (Y) and/or at least one equivalent metal from the group comprising Scandium and the rare earth elements, 15% to 16% chrome (Cr), optionally 0.3% to 1.5% tantal, the remainder nickel (Ni).
Abstract:
Known protective coatings having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. A protective coating is provided. The protective coating includes the composition of 24% to 26% cobalt, 10% to 12% aluminum, 0.2% to 0.5% yttrium, 12% to 14% chromium, and the remainder nickel.
Abstract:
Ceramic coatings for a component that is subjected to high temperatures, especially for a turbine blade are provided. The ceramic coatings contain one or more compounds that are selected from alkaline earth silicates, ZrV2O7 and Mg3(VO4)2. A layer system including at least one coating of the ceramic coating is also provided.
Abstract:
A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases γ/γ′ at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
Abstract:
Protective layers, according to the prior art, achieve their protective function b depletion of a defined element that forms a protective oxide layer or that is exhausted as a sacrificial material. Once said material is exhausted, the protective function cannot be maintained. The invention is characterized by using particles (1) that contain a sustained-release depot of the exhaustible material. For this purpose, the material is present in a superstoichiometric form.
Abstract:
A two-ply MCrAlX layer is provided. The two-ply MCrAlX layer includes nickel and cobalt, but also Cr, Al and Y, differ significantly, in order to improve both oxidation resistance and thermal-mechanical strength. A layer system including a substrate and the two-ply MCrAlX layer is also provided. The MCrAlX layer includes an inner layer and an outer layer.
Abstract:
NiCoCrAl layers used as anticorrosive layers characterized by additional corrosion stability enhancing agents that substantially improve the anticorrosive properties are provided. Corrosion stability is not only determined by the composition and the percentage of the main alloy elements of nickel, cobalt, chromium and aluminium, but also by the addition of corrosion stability enhancing agents, such yttrium, cerium, tantalum, niobium, silicon, titanium, zirconium, and hafnium.
Abstract:
The invention relates to a component having a substrate and a protective layer, which consists of an intermediate NiCoCrAlY layer zone on or near the substrate and an outer layer zone which is arranged on the intermediate NiCoCrAlY layer zone, which is characterized in that the intermediate NiCoCrAlY layer zone comprises of (in wt %): 24-26% Co, 16-18% Cr, 9.5-11% Al, 0.3-0.5 Y, 1-1.8% Re and Ni balance.
Abstract:
A process for producing a component of a gas turbine having a substrate with a metallic layer is provided. The metallic layer is a MCrAlX layer which is treated at temperatures elevated above the operating temperature, by at least 50° C., so that the oxidation and corrosion behavior are improved. In particular a MCrAlX of the type, NiCoCrAlX is used.
Abstract:
The layer system according to the invention uses different grain size distributions for the layer, in order to improve the bonding of the layer to a substrate; a different grain size distribution is used for the outer part of the layer.