摘要:
In an embodiment, a microcode unit for a processor is contemplated. The microcode unit comprises a microcode memory storing a plurality of microcode routines executable by the processor, wherein each microcode routine comprises two or more microcode operations. Coupled to the microcode memory, the sequence control unit is configured to control reading microcode operations from the microcode memory to be issued for execution by the processor. The sequence control unit is configured to stall issuance of microcode operations forming a body of a loop in a first routine of the plurality of microcode routines until a loop counter value that indicates a number of iterations of the loop is received by the sequence control unit.
摘要:
A system and method for copying and initializing a block of memory. To copy several data entities from a source region of memory to a destination region of memory, an instruction may copy each data entity one at a time. If an aggregate condition is determined to be satisfied, multiple data entities may be copied simultaneously. The aggregate condition may rely on an aggregate data size, the size of the data entities to be copied, and the alignment of the source and destination addresses.
摘要:
In one embodiment, a system comprises a first processor core and a second processor core. The first processor core is configured to communicate an address range indication identifying an address range that the first processor core is monitoring for an update. The first processor core is configured to communicate the address range indication responsive to executing a first instruction defined to cause the first processor core to monitor the address range. Coupled to receive the address range indication, the second processor core is configured, responsive to executing a store operation that updates at least one byte in the address range, to signal the first processing core. Coupled to receive the signal from the second processor core, the first processor core is configured to exit a first state in which the first processor core is awaiting the update in the address range responsive to the signal.
摘要:
A processor supports a processing mode in which the address size is greater than 32 bits and the operand size may be 32 or 64 bits. The address size may be nominally indicated as 64 bits, although various embodiments of the processor may implement any address size which exceeds 32 bits, up to and including 64 bits, in the processing mode. The processing mode may be established by placing an enable indication in a control register into an enabled state and by setting a first operating mode indication and a second operating mode indication in a segment descriptor to predefined states. Other combinations of the first operating mode indication and the second operating mode indication may be used to provide compatibility modes for 32 bit and 16 bit processing compatible with the x86 processor architecture (with the enable indication remaining in the enabled state).
摘要:
A system and method for shared dependency checking of status flags. In certain instruction set architectures, the reading of some status flags by the instruction set is exclusive, or nearly exclusive, with respect to the reading of other status flags. Hardware for exclusively read flags may be shared in dependency checking circuitry, allowing the reading of either one flag or the other for during dependency checking of a given instruction. This may allow circuit area to be saved. For an instruction that may need access to both flags, system firmware (e.g. microcode) can be used to break the instruction into two separate instructions or operations, thereby allowing the flags to maintain their exclusivity with respect to each other.
摘要:
In a processor a reorder buffer maintains a load/store (LS) fault address register (LSFAR). When the processor's load/store unit reports most LS exceptions, the reorder buffer redirects the microcode unit of the processor to execute a fault handler indicated by an address stored in the LSFAR. The LSFAR may be mapped into the register space of the processor. It may be written by a microcode routine with the address of a specific fault handler at the beginning of a microcode routine or at any time during a microcode routine. As the reorder buffer retires instructions it checks for writes to the LSFAR. If one exists, the reorder buffer loads the result data of that write into the LSFAR. In a preferred embodiment the reorder buffer retires instructions in program order and the LSFAR is not updated speculatively. Also, in a preferred embodiment, when a microcode routine exits, the LSFAR is automatically returned to a default value which indicates a generic fault handling routine.
摘要:
The invention provides a method of combating a microorganism which comprises allowing a heterocyclic pentalene derivative of general formula I ##STR1## wherein X represents an oxygen atom, a sulphur atom or an --SO-- moiety; Y represents a sulphur, selenium or tellurium atom, provided that when Y represents a selenium or tellurium atom X is an oxygen atom; and R.sup.1 and R.sup.2 together represent a --CH.sub.2 --C(CH.sub.3).sub.2 --CCl(CONH.sub.2)-- or --CH.sub.2 --A--CH.sub.2 -- linkage where A is a --CH.sub.2 --, --CH(CH.sub.3)-- or --S(O).sub.n -- moiety, where n is 0, 1 or 2; provided that when X is an oxygen atom and Y is a sulphur atom R.sup.1 and R.sup.2 together represent a --CH.sub.2 --S(O).sub.n --CH.sub.2 -- linkage and when X is an --SO-- moiety and A is a S(O).sub.n --, n is 2; to act on the microorganism or its environment; and such derivatives for use as a therapeutic substance.
摘要:
A processor receives a command via a sideband interface on the processor to read processor state information, e.g., CPUID information. The sideband interface provides the command information to a microcode engine in the processor that executes the command to retrieve the designated processor state information at an appropriate instruction boundary and retrieves the processor state information. That processor information is stored in local buffers in the sideband interface to avoid modifying processor state. After the microcode engine completes retrieval of the information and the sideband interface command is complete, execution returns to the normal flow in the processor. Thus, the processor state information may be obtained non-destructively during processor runtime.
摘要:
A computer system includes a system memory, a plurality of processor cores, and an input/output (I/O) hub that may communicate with each of the processor cores. In response to detecting an occurrence of an internal system management interrupt (SMI), each of the processor cores may save to a system management mode (SMM) save state in the system memory, information corresponding to a source of the internal SMI. In response to detecting the internal SMI, each processor core may further initiate an I/O cycle to a predetermined port address within the I/O hub. The I/O hub may broadcast an SMI message to each of the processor cores in response to receiving the I/O cycle. Each of the processor cores may further save to the SMM save state in the system memory, respective internal SMI source information in response to receiving the broadcast SMI message.
摘要:
A microprocessor employing a fixed position dispatch unit. The microprocessor includes a plurality of execution units each corresponding to an issue position and configured to execute a common subset of instructions. At least a first one of the execution units includes extended logic for executing a designated instruction that others of the execution units may be incapable of executing. The microprocessor also includes a plurality of decoders coupled to the plurality of execution units. The plurality of decoders may provide positional information to cause the designated instruction to be routed to the first execution unit. Further, the microprocessor includes a dispatch control unit configured to dispatch during a dispatch cycle, the designated instruction for execution by the first execution unit based upon the positional information. The dispatch control unit may further dispatch one or more instructions within the common subset of instructions during the same dispatch cycle.