Abstract:
Disclosed are compounds of Formula 1, including all geometric and stereoisomers, N-oxides, and salts thereof, wherein R1, R2, R3, R4, R5 and R6 are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
Abstract:
The present invention is directed to novel phenylpyridone derivative compounds. The compounds act as a melanin concentrating hormone receptor antagonists, and can be useful in preventing, treating or acting as a remedial agent for various circular system diseases, nervous system diseases, metabolic diseases, genital diseases, respiratory diseases and digestive diseases.
Abstract:
A power converter topology operates as a switching capacitor (capacitive voltage divider) converter during a first, preferably short portion of a switching cycle to provide excellent dynamic transient response and as a pulse width modulated converter during a second portion of a switching cycle to provide flexibility of voltage regulation and generality of application. This topology can be made self-driven and is capable of zero voltage switching. Therefore the power converter can be used as one of a plurality of branches of a multi-phase converter to enhance transient response. The respective branches can also be independently optimized for particular load levels and can be operated independently in a phase shedding manner to improve efficiency at low load. Further, the power converter or respective branches of a multi-phase power converter are compatible with non-linear control to further improve dynamic response.
Abstract:
A direct current (DC)-to-DC conversion apparatus is provided. The provided DC-to-DC conversion apparatus is composed of two boost circuits, in which inputs of both boost circuits are connected in parallel, and outputs of both boost circuits are connected in series. Accordingly, when the provided DC-to-DC conversion apparatus is operated, the DC input power would be firstly sampled and determined, and then the operations of the first and the second switch devices disposed therein would be controlled in response to the sampled-determined result, such that both boost circuits would be respectively operated in different input conditions, for example, the input is normally-connected or the input is reverse-connected. Accordingly, regardless of the input of normal connection or the input of reverse connection, the provided DC-to-DC conversion apparatus can perform the function of DC-to-DC conversion, thereby enabling the applied product to be normally operated even the input is reverse-connected.
Abstract:
Disclosed are compounds of Formula 1, including all geometric and stereoisomers, N-oxides, and salts thereof, wherein A1, A2, A3, A4, A5 and A6 are independently selected from the group consisting of CR3 and N; provided that at most 3 of A1, A2, A3, A4, A5 and A6 is N; B1, B2 and B3 are independently selected from the group consisting of CR2 and N; each R3 is independently H, halogen, C1-C6 alkyl, C1-C6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C1-C6 alkylamino, C2-C6 dialkylamino, —CN or —NO2; and R1, R2, R4, R5, W and n are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
Abstract:
A power adapter to receive at least one AC input power and transform to DC primary output power includes a power factor correction circuit to receive the AC input power and modulate to become a modulated power, an isolation voltage step-down circuit connecting to the power factor correction circuit to modulate the modulated power to a modulated lower voltage power, a switch voltage regulation circuit connecting to the isolation voltage step-down circuit to receive the modulated lower voltage power, and a voltage stabilization circuit connecting to the switch voltage regulation circuit. The switch voltage regulation circuit sets a determined output level and regulates the modulated lower voltage power to become a determined power at the determined output level. The voltage stabilization circuit modulates the determined power to become the primary output power and supplies the primary output power to a primary output end.
Abstract:
A wireless communication system and a method for detecting downlink receiving power in the system are disclosed. N cells in the system respectively transmit data to at least one receiving terminal via N resource blocks using the same time-frequency resources; multiple channel state information reference signals (CSI-RSs) of a corresponding cell are set in each resource block, and orthogonality is maintained among the CSI-RSs of all the cells, wherein N is an integer greater than 1. Said method includes: an additional demodulation reference signal (DM-RS) used for indicating a receiving power is set in a puncture position in the resource block of the first cell which corresponds to a CSI-RS set in a resource block of another cell; and the receiving power of said first cell is detected according to said additional DM-RS. By using said method, the receiving power of a single cell in N cells can be detected, and the system overhead is not increased.
Abstract:
A method for reducing interferences between base stations in a communication system having a plurality of base stations. This method comprises the steps of: causing a user station to receive both a signal transmitted by a local-cell base station and a signal transmitted by an adjacent-cell base station, thereby measuring the SNR of the interfered link and the SNR of the leak link of the adjacent-cell base station; calculating a weighting factor of a leak power based on the measured SNR of the interfered link and the measured SNR of the leak link of the adjacent-cell base station; and determining, based on the calculated weighting factor, whether or not the leak power has to be suppressed and to what degree such suppression has to be performed.
Abstract:
Light load efficiency of a power factor correction circuit is improved by adaptive on-time control and providing for selection between a continuous conduction mode and a discontinuous conduction mode wherein the discontinuous conduction mode increases time between switching pulses controlling connection of a cyclically varying voltage to a filter/inductor that delivers a desired DC voltage and thus can greatly reduce the switching frequency at light loads where switching frequency related losses dominate efficiency. The mode for controlling switching is preferably selected for each switching pulse within a half cycle of the cyclically varying input voltage. A multi-phase embodiment allows cancellation of EMI noise at harmonics of the switching frequency and adaptive change of phase angle allows for cancellation of dominant higher order harmonics as switching frequency is reduced.
Abstract:
An LED backlight driving circuit including a boost circuit and a transformer current balance circuit is provided. The boost circuit provides a total current for n LED strings, and the transformer current balance circuit is coupled to the LED strings and includes n−1 transformers. A first LED current-balance-circuit (CBC) includes a switching-transistor connected to a secondary-winding of a first-transformer, and an nth LED CBC includes a switching-transistor connected to a primary-winding of an (n−1)th transformer. An ith (1 2) LED CBC includes a switching-transistor sequentially connected to a primary-winding of an (i−1)th transformer and a secondary-winding of an ith transformer. The passive-transformers are applied in the LED driving circuit to implement current balance/equalization, such that the LED backlight driving circuit is suitable for a system with any odd or even number (greater than 1) of the LED strings connected in parallel, so as to reduce the cost of the system.