Abstract:
One or more techniques and/or computing devices are provided for automatic switchover implementation. For example, a first storage controller, of a first storage cluster, may have a disaster recovery relationship with a second storage controller of a second storage cluster. In the event the first storage controller fails, the second storage controller may automatically switchover operation from the first storage controller to the second storage controller for providing clients with failover access to data previously accessible to the clients through the first storage controller. The second storage controller may detect, cross-cluster, a failure of the first storage controller utilizing remote direct memory access (RDMA) read operations to access heartbeat information, heartbeat information stored within a disk mailbox, and/or service processor traps. In this way, the second storage controller may efficiently detect failure of the first storage controller to trigger automatic switchover for non-disruptive client access to data.
Abstract:
One or more techniques and/or computing devices are provided for automatic switchover implementation. For example, a first storage controller, of a first storage cluster, may have a disaster recovery relationship with a second storage controller of a second storage cluster. In the event the first storage controller fails, the second storage controller may automatically switchover operation from the first storage controller to the second storage controller for providing clients with failover access to data previously accessible to the clients through the first storage controller. The second storage controller may detect, cross-cluster, a failure of the first storage controller utilizing remote direct memory access (RDMA) read operations to access heartbeat information, heartbeat information stored within a disk mailbox, and/or service processor traps. In this way, the second storage controller may efficiently detect failure of the first storage controller to trigger automatic switchover for non-disruptive client access to data.
Abstract:
Exemplary embodiments provide methods, mediums, and systems for efficiently moving data between cluster nodes. Upon receiving a request to read or write data at a first cluster node that is in communication with a client, the first node effects the transfer to or from a second cluster node. The transfer is carried out using a combination of remote data memory access (“RDMA”), or a similar technique that bypasses a part of the network stack, and transport control protocol (“TCP”), or a similar technique that does not bypass a part of the network stack. The data is transferred using RDMA, while certain control messages are sent using TCP. By combining RDMA content transfers and TCP control messages, data transfers can be carried out faster, more efficiently, and with less processing overhead. Other embodiments are described and claimed.
Abstract:
Methods, non-transitory computer readable media, and computing devices that send an allocation request for an amount of memory to a another computing device. An indication of a memory range corresponding to a plurality of remote use data buffers within a memory of the another computing device is received from the another computing device. A locally managed remote memory (LMRM) pool comprising metadata for the remote use data buffers is instantiated based on the indication of the memory range. One of the remote use data buffers in the LMRM pool is reserved. Data is sent via remote direct memory access (RDMA) to the one of the remote use data buffers. Advantageously, with this technology, a computing device can manage memory belonging to another computing device via the LMRM pool in order to transfer data more efficiently.
Abstract:
Methods, non-transitory machine readable media, and computing devices that manage data storage fabric health are disclosed. With this technology, a network model is applied to network data determined from monitored network traffic exchanged between storage nodes and via network connections over a cluster fabric to generate a health score for the cluster fabric. A cause of health degradation in the cluster fabric is determined based on an analysis of the network data, when the health score indicates that health of the cluster fabric is degrading. A corrective action is automatically initiated based on the cause of health degradation in the cluster fabric. With this technology, cluster fabrics in data storage networks are more effectively monitored for health degradation and, advantageously, corrective actions can be preemptively initiated to improve performance.
Abstract:
One or more techniques and/or devices are provided for storage virtual machine relocation (e.g., ownership change) between storage clusters. For example, operational statistics of a first storage cluster and a second storage cluster may be evaluated to identify a set of load balancing metrics. Ownership of one or more storage aggregates and/or one or more storage virtual machines may be changed (e.g., permanently changed for load balancing purposes or temporarily changed for disaster recovery purposes) between the first storage cluster and the second storage cluster utilizing zero-copy ownership change operations based upon the set of load balancing metrics. For example, if the first storage cluster is experiencing a relatively heavier load of client I/O operations and the second storage cluster has available resources, ownership of a storage aggregate and a storage virtual machine may be switched from the first storage cluster to the second storage cluster for load balancing.
Abstract:
One or more techniques and/or devices are provided for storage virtual machine relocation (e.g., ownership change) between storage clusters. For example, operational statistics of a first storage cluster and a second storage cluster may be evaluated to identify a set of load balancing metrics. Ownership of one or more storage aggregates and/or one or more storage virtual machines may be changed (e.g., permanently changed for load balancing purposes or temporarily changed for disaster recovery purposes) between the first storage cluster and the second storage cluster utilizing zero-copy ownership change operations based upon the set of load balancing metrics. For example, if the first storage cluster is experiencing a relatively heavier load of client I/O operations and the second storage cluster has available resources, ownership of a storage aggregate and a storage virtual machine may be switched from the first storage cluster to the second storage cluster for load balancing.
Abstract:
One or more techniques and/or devices are provided for storage virtual machine relocation (e.g., ownership change) between storage clusters. For example, operational statistics of a first storage cluster and a second storage cluster may be evaluated to identify a set of load balancing metrics. Ownership of one or more storage aggregates and/or one or more storage virtual machines may be changed (e.g., permanently changed for load balancing purposes or temporarily changed for disaster recovery purposes) between the first storage cluster and the second storage cluster utilizing zero-copy ownership change operations based upon the set of load balancing metrics. For example, if the first storage cluster is experiencing a relatively heavier load of client I/O operations and the second storage cluster has available resources, ownership of a storage aggregate and a storage virtual machine may be switched from the first storage cluster to the second storage cluster for load balancing.