摘要:
An apparatus for a vehicle for protection of a colliding object is provided, which includes one of a collision prediction module that delivers a precautionary signal when the collision prediction module predicts a collision of the vehicle with the object and a collision detection module that delivers a collision signal when the collision detection module detects the collision, an air bag which deploys on either a hood of the vehicle or an outside of its windshield when the collision is either predicted by the collision prediction module or detected by the collision detection module, a camera for taking a forward image of the vehicle and a monitor disposed in a cabin of the vehicle. In the apparatus, the monitor displays the image taken by the camera when the monitor receives one of the precautionary signal and the collision signal.
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9), and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
To the end of ensuring a brisk maneuverability of a front and rear wheel steering vehicle without causing any unstable behavior of the vehicle, the rear wheels are steered in an opposite phase relationship to the front wheels to offset an under-steer tendency of the vehicle when a lateral acceleration acting on the vehicle is between a first prescribed value and a second prescribed value higher than the first prescribed value, and the vehicle would otherwise demonstrate an under-steer tendency, and in a same phase relationship to the front wheels to prevent an excessive slip angle from developing in the rear wheels when the detected lateral acceleration is greater than the second prescribed value, and the slip angle of the rear wheels would otherwise develop an excessive slip angle. In other words, the rear wheels are steered in an opposite phase relationship to the front wheels so long as a lateral acceleration acting on the vehicle is within a range which would not give rise to any excessive slip angle of the rear wheels.
摘要:
In a brake system in an electric vehicle comprising a follower wheel capable of being hydraulically braked by the operation of a brake operating element, and a driving wheel connected to and driven by a motor using a battery as an energy source and capable of being hydraulically braked and regeneratively braked by the operation of the brake operating element, the regenerative braking force for the driving wheel exceeds a theoretic distribution characteristic of the braking forces for the follower and driving wheels at least during an initial braking. Thus, it is possible to sufficiently perform the recovery of the kinetic energy of the vehicle by the regenerative braking to increase the possible travel distance of the vehicle. In addition, at least during an initial braking, the hydraulic braking of the driving wheel and the hydraulic braking of the follower wheel are inhibited, and substantially only the regenerative braking of the driving wheel is performed. Thus, it is possible to recover the kinetic energy of the vehicle without consumption thereof by the hydraulic braking to increase the possible travel distance of the vehicle.
摘要:
An independent rear suspension for use on a motor vehicle having a vehicle body includes a knuckle for supporting a wheel rotatably thereon, a trailing arm having one end rigidly coupled to the knuckle and the opposite end adapted to be pivotally mounted on the vehicle body for pivotal movement about a first pivot, a pair of spaced lower arms pivotally mounted on the knuckle, a knuckle arm extending substantially upwardly from the knuckle, and an upper arm having one end pivotally mounted on the knuckle arm by a ball-and-socket joint and the opposite end adapted to be pivotally mounted on the vehicle body for pivotal movement about a second pivot, the second pivot having a central axis, the extension of which passes substantially through the first pivot. The aforesaid one end of the upper arm has a third pivot about which it is pivotally movable, the third pivot having a central axis, the extension of which is substantially parallel to the extension of the central axis of the second pivot.
摘要:
A trailing arm joint structure includes a knuckle for supporting a wheel and a substantially plate-like trailing arm lying in a vertical plane and having a front end adapted to be pivotally coupled to a vehicle frame and a rear end pivotally coupled to the knuckle. The knuckle has a front bifurcated portion composed of first upper and lower joint fingers extending forwardly and spaced vertically from each other, the knuckle having a link joint positioned between the first upper and lower joint fingers. The rear end of the trailing arm has a rear bifurcated portion composed of second upper and lower joint fingers extending rearwardly and spaced vertically from each other, the front and rear bifurcated portions being held against each other with said first and second upper and lower joint fingers being fastened together.
摘要:
A method of operating a vehicle height adjusting apparatus including a vehicle body having front and rear wheels, contractible and extensible dampers disposed between the front and rear wheels and the vehicle body, a motor, a pump unit having inlet and outlet ports and drivable by the motor for supplying a working fluid under pressure to the dampers, a first valve member disposed in a first fluid passage between the pump unit and the dampers for adjusting the height of the vehicle, and a second valve member disposed in a second fluid passage between the inlet and outlet ports of the pump unit and connected to the first fluid passage for discharging the fluid from the dampers to the outlet port of the pump unit. The method comprises the steps of actuating the pump unit, opening the second valve member no later than simultaneously with the actuation of the pump unit, and closing the second valve member a predetermined period of time after it has been opened, whereby the height of the vehicle can be increased.
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9), and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
An azimuth change quantity .theta. of a road during traveling of a vehicle for a time .delta.t is calculated based on road data provided by a navigation system and a vehicle speed provided by a vehicle speed sensor (at step S3 in FIG. 2). On the other hand, an azimuth change quantity .THETA. of the vehicle is calculated by integrating a yaw rate .gamma. obtained from a yaw rate sensor over the time .delta.t (at step S5). A deviation D between the azimuth change quantity .theta. of the road and the azimuth change quantity .THETA. of the vehicle is calculated (at step S6). When the deviation D becomes equal to or larger than a reference value .beta., it is determined that there is a possibility that the vehicle will depart from the road (at step S9) , and a predetermined steering torque is applied to a steering device, so that the deviation is converged into zero (at steps S10 and S11).
摘要:
The road friction is determined from the deviation of the estimated yaw rate under a standard condition from the actually measured yaw rate. The system for determining the road friction includes a parameter identification unit which determines a parameter of a variation term defined in the transfer function of the model for the vehicle response. The variation term may consist of a zero-th order or a first-order transfer function which would not cause any large computation load, and may not depend on the vehicle speed. The determined road friction may be used for controlling the rear wheel steering angle of a four wheel steering vehicle.