摘要:
A vertical alignment liquid crystal layer is sealed between a first substrate having a first electrode and a second substrate having a second electrode, each pixel region has a reflective region and a transmissive region, and a gap adjusting section is provided on one of sides of the first substrate and the second substrate which sets a thickness (gap) d of the liquid crystal layer which controls a phase difference of incident light to the liquid crystal layer so that a gap dr in the reflective region is smaller than a gap dt in the transmissive region. An alignment controller which divides alignment of the liquid crystal within a pixel region is provided in the pixel region on at least one of the sides of the first substrate and the second substrate. It is also possible to optimize by changing the gap in red, green, and blue.
摘要:
An orientation controller which divides a pixel into a plurality of different priority alignment regions and an additional orientation controller are provided in a pixel. The additional orientation controller is provided at least at an end of a pixel of a long-side alignment region formed along the long side of the pixel among the divided alignment regions, for example, around a center position of the long side of the pixel. The additional orientation controller can be realized, for example, by forming a cutout pattern in a side of a first electrode (pixel electrode) forming a part of the pixel. Because the alignment direction is also controlled by the additional orientation controller, the alignment of liquid crystal in this region is stabilized.
摘要:
A vertical alignment liquid crystal layer is sealed between a first substrate having a first electrode and a second substrate having a second electrode, each pixel region has a reflective region and a transmissive region, and a gap adjusting section is provided on one of sides of the first substrate and the second substrate which sets a thickness (gap) d of the liquid crystal layer which controls a phase difference of incident light to the liquid crystal layer so that a gap dr in the reflective region is smaller than a gap dt in the transmissive region. An alignment controller which divides alignment of the liquid crystal within a pixel region is provided in the pixel region on at least one of the sides of the first substrate and the second substrate. It is also possible to optimize by changing the gap in red, green, and blue.
摘要:
The invention is directed to the higher contrast in a display device with a lighting device as a front light and a reflective LCD. A lighting device is disposed, being opposed to a front surface of a reflective electrode of a reflective LCD. An organic EL element layer including an anode, a cathode patterned into stripes, and an organic layer is formed in the lighting device. A region of the organic layer corresponding to the cathode serves as an emissive region. A light shield layer is formed covering the cathode. Furthermore, a diffraction grating made of an aluminum layer and having a plurality of fine slits formed by patterning is disposed on the reflective LCD, as a polarizing layer that can be formed thinner as much as possible.
摘要:
A vertical alignment liquid crystal layer is sealed between a first substrate having a first electrode and a second substrate having a second electrode, each pixel region has a reflective region and a transmissive region, and a gap adjusting section is provided on one of sides of the first substrate and the second substrate which sets a thickness (gap) d of the liquid crystal layer which controls a phase difference of incident light to the liquid crystal layer so that a gap dr in the reflective region is smaller than a gap dt in the transmissive region. An alignment controller which divides alignment of the liquid crystal within a pixel region is provided in the pixel region on at least one of the sides of the first substrate and the second substrate. It is also possible to optimize by changing the gap in red, green, and blue.
摘要:
A vertically aligned type liquid crystal display includes a liquid crystal layer disposed between pixel electrodes and a common electrode and containing vertically aligned liquid crystal molecules, the orientation of the liquid crystal molecules being controlled by an electric field. An orientation controller is formed on the common electrode at a position opposing the pixel electrode and an aspect ratio, i.e., a vertical to horizontal length ratio of the pixel electrode is set to at least 2. Alternatively, the pixel electrode is partitioned into at least two electrode regions so that each region represents a divided pixel electrode. An orientation controller is formed on the common-electrode so as to correspond to each divided pixel electrode, an aspect ratio of each divided pixel electrode is set to at least 2. As such, the influence at the edge sections of the pixel electrode is reduced, viewing angle characteristic and transmittance are improved, and average response time is shortened.
摘要:
The invention is directed to a higher contrast in a display device having a lighting device as a front light. A lighting portion is attached to a reflective liquid crystal display portion. A first transparent substrate and a second transparent substrate made of a glass substrate etc. are attached to each other with a sealing layer coated on those peripheral portions therebetween. The back surface of the first transparent substrate is attached to the reflective liquid crystal display portion, and an organic EL element is formed on the front surface of the first transparent substrate. The organic EL element is sealed in a space surrounded by the first transparent substrate, the second transparent substrate, and the sealing layer. The organic EL element is formed in a region corresponding to a pixel region of the reflective liquid crystal display portion. A desiccant layer is formed on the front surface of the second transparent substrate.
摘要:
An LCD apparatus having a liquid crystal layer sealed between a first substrate having a first electrode and a second substrate having a second electrode, wherein the first substrate comprises a reflective layer formed only in a subregion within a pixel region, for reflecting light. A transparent conductive material is used for the first electrode and the first electrode made of the transparent conductive material is layered to cover a transmissive region within a pixel region and over the reflective layer in a reflective region within the pixel region to directly cover the reflective layer. Optimum cell gaps dr and dt are set in the reflective and the transmissive regions, respectively, based on a twist angle, which is a difference between the alignment directions of liquid crystal at the side of the first electrode and of liquid crystal at the side of the second electrode so that an optimum reflectivity and an optimum transmittance are realized in each region to allow enhancements in the quality of a transflective LCD. A configuration may be employed in which a switching element is formed over the first substrate and the reflective layer is placed in the reflective region of a pixel region on an insulating film which covers the switching element, the reflective layer being insulated from the switching element, the work functions for the first electrode and for the second electrode are similar.
摘要:
On a first substrate, a TFT which is a switching element is provided for each pixel, and above an insulating film covering this TFT, a reflective layer which is insulated from the TFT and which reflects light entering a second substrate and transmitting through a second electrode made of ITO is formed. Further, a first electrode having a work function similar to that of the second electrode and made of a transparent conductive material such as ITO is formed closer to a liquid crystal layer than the reflective layer, and this first electrode is connected with the TFT. With this configuration, the liquid crystal layer can be symmetrically AC driven by the first and second electrodes. A reliable connection between the first electrode and the TFT is provided through a connection metal layer made of a refractory metal.
摘要:
A lighting device lighting a display surface of a reflective LCD is disposed opposing to the display surface of the reflective LCD. This lighting device is formed by interposing an organic EL element layer between transparent substrates. The organic EL element layer is formed of an anode, a cathode, and an organic layer. The cathode is formed in a grid pattern, and a light shield layer formed into the same grid pattern as that of the cathode is formed over this cathode. It is preferable that a width of the light shield layer is larger than a width of the patterned cathode for enhancing a light shield effect.